IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p14-d1302873.html
   My bibliography  Save this article

Analysis of the Ongoing Effects of Disasters in Urbanization Process and Climate Change: China’s Floods and Droughts

Author

Listed:
  • Yong Mu

    (Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Shaanxi Provincial Land Engineering Construction Hotel Management Group Co., Ltd., Xi’an 710075, China)

  • Ying Li

    (Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Shaanxi Provincial Land Engineering Construction Hotel Management Group Co., Ltd., Xi’an 710075, China)

  • Ran Yan

    (Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Shaanxi Provincial Land Engineering Construction Hotel Management Group Co., Ltd., Xi’an 710075, China)

  • Pingping Luo

    (Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
    School of Water and Environment, Chang’an University, Xi’an 710064, China
    Xi’an Monitoring, Modelling and Early Warning of Watershed Spatial Hydrology International Science and Technology Cooperation Base, Chang’an University, Xi’an 710064, China)

  • Zhe Liu

    (Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi’an 710075, China
    Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an 710075, China)

  • Yingying Sun

    (Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710075, China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi’an 710075, China
    Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an 710075, China)

  • Shuangtao Wang

    (Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
    School of Water and Environment, Chang’an University, Xi’an 710064, China
    Xi’an Monitoring, Modelling and Early Warning of Watershed Spatial Hydrology International Science and Technology Cooperation Base, Chang’an University, Xi’an 710064, China)

  • Wei Zhu

    (Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
    School of Water and Environment, Chang’an University, Xi’an 710064, China
    Xi’an Monitoring, Modelling and Early Warning of Watershed Spatial Hydrology International Science and Technology Cooperation Base, Chang’an University, Xi’an 710064, China)

  • Xianbao Zha

    (Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
    School of Water and Environment, Chang’an University, Xi’an 710064, China
    Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan)

Abstract

Urban development and climate change have strengthened the possibility of floods and droughts in cities. In this study, we evaluated the influences of these disasters and related social damage in nine major basins during the past 50 years. Unusually, the following conclusions were drawn from the analysis of relevant indicators before and after urbanization: (1) agricultural loss area (flood), grain loss, and direct economic loss showed an upward trend, while other indicators showed the opposite. (2) Floods most often occur in the Yangtze River Basin (58, 26.2%), followed by the Liaohe River Basin (49, 22.2%), which is closely related to the topography and economic progress of the area. (3) The modified Mann–Kendall (MK) analysis results are consistent with the indicators trend. Finally, the regularity of the climate change and urbanization process is revealed by the migration of the standard deviation ellipse and the mean center of the four indicators. China needs to integrate urban water/drought policy development with sustainable urbanization policy development to cope with the changing natural and social environment and to minimize urban ecological risks.

Suggested Citation

  • Yong Mu & Ying Li & Ran Yan & Pingping Luo & Zhe Liu & Yingying Sun & Shuangtao Wang & Wei Zhu & Xianbao Zha, 2023. "Analysis of the Ongoing Effects of Disasters in Urbanization Process and Climate Change: China’s Floods and Droughts," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:14-:d:1302873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    2. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    3. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    4. K. M. Asim & F. Martínez-Álvarez & A. Basit & T. Iqbal, 2017. "Earthquake magnitude prediction in Hindukush region using machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 471-486, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Liu & Wenli Pan & Fei Su & Jianyi Huang & Jiaqi Luo & Lei Tong & Xi Fang & Jiayi Fu, 2022. "Livelihood Resilience of Rural Residents under Natural Disasters in China," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    2. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    4. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    5. Sarah Ann Wheeler & Céline Nauges & Alec Zuo, 2021. "How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour," Post-Print hal-04670841, HAL.
    6. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    7. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    8. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    9. Nnodu Ifeanyi Daniel & Magaji Joshua Ibrahim, 2024. "Spatiotemporal Variations of Rainfall Over Nigeria from 1971 to 2020," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(7), pages 1374-1390, July.
    10. Tianli Wang & Yanji Ma & Siqi Luo, 2023. "Spatiotemporal Evolution and Influencing Factors of Soybean Production in Heilongjiang Province, China," Land, MDPI, vol. 12(12), pages 1-29, November.
    11. Malik, Ihtisham A. & Chowdhury, Hasibul & Alam, Md Samsul, 2023. "Equity market response to natural disasters: Does firm's corporate social responsibility make difference?," Global Finance Journal, Elsevier, vol. 55(C).
    12. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    13. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    14. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.
    15. Hüseyin Yavuz & Saffet Erdoğan, 2012. "Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 609-621, February.
    16. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    17. van der Linden, Sander, 2014. "On the relationship between personal experience, affect and risk perception: the case of climate change," LSE Research Online Documents on Economics 57689, London School of Economics and Political Science, LSE Library.
    18. Vélez-Espino, Luis A. & Koops, Marten A., 2012. "Capacity for increase, compensatory reserves, and catastrophes as determinants of minimum viable population in freshwater fishes," Ecological Modelling, Elsevier, vol. 247(C), pages 319-326.
    19. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:14-:d:1302873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.