IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5534-d1103458.html
   My bibliography  Save this article

Improving Electric Vehicle Range and Thermal Comfort through an Innovative Seat Heating System

Author

Listed:
  • Florin Bode

    (Department of Mechanical Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
    Building Services Faculty, CAMBI Research Center, Technical University of Civil Engineering Bucharest, Pache Protopopescu No. 66, 021412 Bucharest, Romania)

  • Nicolae Vlad Burnete

    (Department of Automotive Engineering and Transports, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania)

  • Lucian Fechete Tutunaru

    (Department of Automotive Engineering and Transports, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania)

  • Ilinca Nastase

    (Building Services Faculty, CAMBI Research Center, Technical University of Civil Engineering Bucharest, Pache Protopopescu No. 66, 021412 Bucharest, Romania)

Abstract

In the last decade, car manufactures invested a lot of effort to align their products to the latest energy directives which encourage the production and usage of electrified vehicles to reduce the greenhouse gases production. This resulted in several important developments, which enhanced the advantages of electric vehicles in terms of local emissions (zero tailpipe emissions), efficiency, convenience in urban areas and others and ultimately led to their ever-increasing adoption. However, there are still some challenges that need to be addressed. One example is the negative influence of low (winter) and high (summer) atmospheric temperatures on electric vehicle range due to the cabin temperature heating and cooling. This requires more efficient ways of using energy to avoid sacrificing the passenger thermal comfort for an increased vehicle range. The present study proposes a new strategy for heating the seats in electrically powered vehicles using an uneven distribution of the heating elements. The uneven positioning of the heating elements is based on the thermal sensitivity of the human skin measured data and scientific literature. For this, a thermal sensitivity test device was developed to map the human skin thermal sensitivity. To test the new solution, a vehicle seat was equipped with heating pads (arranged according to the position of the relevant human skin thermal sensitivity points). For the next step, comparative measurements (power consumption, temperature distribution—with an IR camera—and human subjectivity test) were carried out between a classical vehicle seat heating system and the newly proposed heating solution. The outcome of the study revealed that the proposed heating system will supply at least the same thermal comfort sensation as the standard vehicle seat but using only half of the energy consumption, which translates in an increase of the electrically powered vehicle range between 1.2% and 1.5%, depending on the climate and driving conditions (over the WLTC). For example, a vehicle with a 16 kWh battery driving over the WLTC in Frankfurt climate conditions can gain in 1 year between 139.6 and 164.5 km.

Suggested Citation

  • Florin Bode & Nicolae Vlad Burnete & Lucian Fechete Tutunaru & Ilinca Nastase, 2023. "Improving Electric Vehicle Range and Thermal Comfort through an Innovative Seat Heating System," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5534-:d:1103458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    3. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunren Sui & Zengguang Sui & Guangda Liang & Wei Wu, 2023. "Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    5. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    6. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    9. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    10. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    11. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    12. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    13. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    14. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    16. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    17. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    18. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    19. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    20. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5534-:d:1103458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.