IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4742-d1090163.html
   My bibliography  Save this article

The Influence of Industrial Output, Financial Development, and Renewable and Non-Renewable Energy on Environmental Degradation in Newly Industrialized Countries

Author

Listed:
  • Shabana Parveen

    (Department of Economics, Hazara University (KP), Dhodial, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan)

  • Saleem Khan

    (Department of Economics, Faculty of Business and Economics, Abdul Wali Khan University Mardan (KP), Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Muhammad Abdul Kamal

    (Department of Economics, Faculty of Business and Economics, Abdul Wali Khan University Mardan (KP), Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Muhammad Ali Abbas

    (Department of Economics, Hazara University (KP), Dhodial, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan)

  • Aamir Aijaz Syed

    (Institute of Management, Commerce, and Economics, Shri Ramswaroop Memorial University, Lucknow 225003, India)

  • Simon Grima

    (Department of Insurance and Risk Management, Faculty of Economics, Management and Accountancy, University of Malta, MSD 2080 Msida, Malta
    Faculty of Business, Management and Economics, University of Latvia, 1586 Riga, Latvia)

Abstract

The prime objective of this study is to examine the impact of industrial output and financial development on carbon dioxide emissions for a panel of 10 newly industrialized countries, namely Brazil, China, India, Indonesia, Malaysia, Mexico, Philippines, South Africa, Thailand, and Turkey. The empirical analysis was conducted between 1982 and 2019 by employing various estimation tests and techniques. The different tests account for cross-sectional dependence in different series of the model. Therefore, the relevant panel unit root was conducted, and we found that all series become stationary after the first difference. The long run parameters were estimated, and we found that there is a significant long-run relationship between the industrial output, the financial development, and the carbon emissions. The carbon emissions are found to be significantly affected by both domestic income and industrial output, while being negatively affected by financial development. Industrial production coefficient estimates are highly elastic when compared to the other estimates. The results also indicate unidirectional short-run causality from the domestic output and trade openness to carbon emissions, urban population to domestic output, and financial development to industrial output. However, there is no evidence of bidirectional causality. The study concludes that sustainable economic growth can be achieved by using contemporary and efficient production techniques, using environmentally friendly inputs in industries, and increasing vigilance of both the public and private sectors. Both the public and private sectors should therefore be pushed to use more modern, eco-friendly, and productive processing techniques. It is recommended that both the public and commercial sectors be encouraged to embrace cutting-edge, environmentally friendly, and productive processing methods.

Suggested Citation

  • Shabana Parveen & Saleem Khan & Muhammad Abdul Kamal & Muhammad Ali Abbas & Aamir Aijaz Syed & Simon Grima, 2023. "The Influence of Industrial Output, Financial Development, and Renewable and Non-Renewable Energy on Environmental Degradation in Newly Industrialized Countries," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4742-:d:1090163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apergis, Nicholas & Payne, James E., 2010. "A panel study of nuclear energy consumption and economic growth," Energy Economics, Elsevier, vol. 32(3), pages 545-549, May.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    4. Aamir Aijaz Syed, 2021. "The Asymmetric Relationship Between Military Expenditure, Economic Growth and Industrial Productivity: An Empirical Analysis of India, China and Pakistan Via the NARDL Approach," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 77-97, March.
    5. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    6. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    7. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    8. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    9. Sadorsky, Perry, 2010. "The impact of financial development on energy consumption in emerging economies," Energy Policy, Elsevier, vol. 38(5), pages 2528-2535, May.
    10. Odhiambo, Nicholas M, 2020. "Financial development,income inequality and carbon emissions in Sub-Saharan African countries: A panel data analysis," Working Papers 26645, University of South Africa, Department of Economics.
    11. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    12. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    13. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    14. Samia Nasreen & Sofia Anwar, 2015. "The impact of economic and financial development on environmental degradation," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 485-502, October.
    15. Sahbi Farhani, 2013. "Renewable Energy Consumption, Economic Growth and Co2 Emissions: Evidence from Selected Mena Countries," Energy Economics Letters, Asian Economic and Social Society, vol. 1(2), pages 24-41.
    16. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    17. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    18. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    19. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    20. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    21. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    22. Hala Abou-Ali & Yasmine M. Abdelfattah & John Adams, 2016. "Population Dynamics and Carbon Emissions in the Arab Region: An Extended Stirpat II Model," Working Papers 988, Economic Research Forum, revised Apr 2016.
    23. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    24. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    25. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    26. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    27. Abbasi, Faiza & Riaz, Khalid, 2016. "CO2 emissions and financial development in an emerging economy: An augmented VAR approach," Energy Policy, Elsevier, vol. 90(C), pages 102-114.
    28. Ozturk, Ilhan & Acaravci, Ali, 2013. "The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey," Energy Economics, Elsevier, vol. 36(C), pages 262-267.
    29. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    30. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    31. repec:bla:obuest:v:61:y:1999:i:0:p:653-70 is not listed on IDEAS
    32. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    33. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    34. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    35. Paul Shrivastava, 1995. "Environmental technologies and competitive advantage," Strategic Management Journal, Wiley Blackwell, vol. 16(S1), pages 183-200.
    36. Shuddhasattwa Rafiq & Ruhul Salim & Nicholas Apergis, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), pages 348-365, July.
    37. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    38. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Pacana & Dominika Siwiec & Jacek Pacana, 2023. "Fuzzy Method to Improve Products and Processes Considering the Approach of Sustainable Development (FQE-SD Method)," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    2. Olimpia Neagu & Andrei Marius Anghelina & Mircea Constantin Teodoru & Marius Boiță & Katalin Gabriela David, 2023. "Could Globalisation and Renewable Energy Contribute to a Decarbonised Economy in the European Union?," Sustainability, MDPI, vol. 15(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Okoye, Jude O., 2023. "Towards renewable energy generation and low greenhouse gas emission in high-income countries: Performance of financial development and governance," Renewable Energy, Elsevier, vol. 215(C).
    2. Taner Akan & Halil İbrahim Gündüz & Tara Vanlı & Ahmet Baran Zeren & Ali Haydar Işık & Tamerlan Mashadihasanli, 2023. "Why are some countries cleaner than others? New evidence from macroeconomic governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6167-6223, July.
    3. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Mehmet Balcilar & Ojonugwa Usman & George N. Ike, 2023. "Investing green for sustainable development without ditching economic growth," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 728-743, April.
    5. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    6. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    7. Ahsan Anwar & Avik Sinha & Arshian Sharif & Muhammad Siddique & Shoaib Irshad & Waseem Anwar & Summaira Malik, 2022. "The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6556-6576, May.
    8. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    9. Qiang Wang & Ting Yang & Rongrong Li & Xiaowei Wang, 2023. "Reexamining the impact of foreign direct investment on carbon emissions: does per capita GDP matter?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    10. Iftikhar Yasin & Nawaz Ahmad & Muhammad Aslam Chaudhary, 2021. "The impact of financial development, political institutions, and urbanization on environmental degradation: evidence from 59 less-developed economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6698-6721, May.
    11. Yilmaz Bayar & Laura Diaconu (Maxim) & Andrei Maxim, 2020. "Financial Development and CO 2 Emissions in Post-Transition European Union Countries," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
    12. Hussein Moghaddam & Robert M. Kunst, 2023. "The Role of Natural Gas in Mitigating Greenhouse Gas Emissions: The Environmental Kuznets Curve Hypothesis for Major Gas-Producing Countries," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    13. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    14. Awad, Atif, 2019. "Does economic integration damage or benefit the environment? Africa's experience," Energy Policy, Elsevier, vol. 132(C), pages 991-999.
    15. Mohammad Mafizur Rahman & Xuan-Binh (Benjamin) Vu & Son Nghiem, 2022. "Economic Growth in Six ASEAN Countries: Are Energy, Human Capital and Financial Development Playing Major Roles?," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    16. Alexandra Horobet & Oana Cristina Popovici & Emanuela Zlatea & Lucian Belascu & Dan Gabriel Dumitrescu & Stefania Cristina Curea, 2021. "Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade," Energies, MDPI, vol. 14(10), pages 1-30, May.
    17. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    18. Kahia, Montassar & Ben Aïssa, Mohamed Safouane & Charfeddine, Lanouar, 2016. "Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs)," Energy, Elsevier, vol. 116(P1), pages 102-115.
    19. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    20. Sofien Tiba & Musavir Ul Habib, 2024. "Examining the Causal Linkages Between Nuclear Energy, Environment, and Economic Growth: An Application from the SAARC Economies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 9699-9722, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4742-:d:1090163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.