IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2858-d555443.html
   My bibliography  Save this article

Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade

Author

Listed:
  • Alexandra Horobet

    (Department of International Business and Economics, Bucharest University of Economic Studies, 010374 București, Romania)

  • Oana Cristina Popovici

    (Romanian Academy, Institute for Economic Forecasting, Bucharest University of Economic Studies, 010374 București, Romania)

  • Emanuela Zlatea

    (Department of International Business and Economics, Bucharest University of Economic Studies, 010374 București, Romania)

  • Lucian Belascu

    (Department of Management, Marketing and Business Administration, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania)

  • Dan Gabriel Dumitrescu

    (Department of International Business and Economics, Bucharest University of Economic Studies, 010374 București, Romania)

  • Stefania Cristina Curea

    (Department of Financial and Economic Analysis, Bucharest University of Economic Studies, 010374 București, Romania)

Abstract

The European Union’s environmental goal by 2050 is to become the first climate-neutral continent in the world. This means specific efforts for diversifying the energy mix and investing in low-carbon energy. Our study investigates the nexus among carbon emissions, energy consumption and mix, and economic growth in a modified framework that includes the contribution of inward foreign direct investments and international trade to lowering air pollution. We have used a two-step approach to explore in more detail the links between these variables in 24 EU countries over the period 1995–2018, followed by a panel VECM analysis. Our results indicate that there is a unidirectional link between economic growth and CO 2 emissions, which should imply a decoupling of environmental improvement measures from the pace of economic growth. We also find bidirectional causal relationships between low-carbon energy shares in consumption and CO 2 emissions, as well as between low-carbon energy share in consumption and GDP per capita, which confirms both pollution haven and the halo effect hypotheses for FDI on gas emissions. However, in the long term, FDI, exports, and imports have positively impacted the reduction in CO 2 emissions; therefore, stronger EU investment and trade integration should be promoted to improve the quality of the environment.

Suggested Citation

  • Alexandra Horobet & Oana Cristina Popovici & Emanuela Zlatea & Lucian Belascu & Dan Gabriel Dumitrescu & Stefania Cristina Curea, 2021. "Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade," Energies, MDPI, vol. 14(10), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2858-:d:555443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mussini, Mauro, 2020. "Inequality and convergence in energy intensity in the European Union," Applied Energy, Elsevier, vol. 261(C).
    2. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Effects of renewable energy sector development on electricity consumption – Growth nexus in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    4. Thomas Blanchet & Lucas Chancel & Amory Gethin, 2019. "How Unequal is Europe? Evidence from Distributional National Accounts, 1980-2017," World Inequality Lab Working Papers hal-02877000, HAL.
    5. Aurelia Bengochea-Morancho & Francisco Higón-Tamarit & Inmaculada Martínez-Zarzoso, 2001. "Economic Growth and CO2 Emissions in the European Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 165-172, June.
    6. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
    7. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    8. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    9. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    10. Olivier Damette & Antonio C. Marques, 2019. "Renewable energy drivers: a panel cointegration approach," Applied Economics, Taylor & Francis Journals, vol. 51(26), pages 2793-2806, June.
    11. Nuno Carlos Leitão & Daniel Balsalobre Lorente, 2020. "The Linkage between Economic Growth, Renewable Energy, Tourism, CO 2 Emissions, and International Trade: The Evidence for the European Union," Energies, MDPI, vol. 13(18), pages 1-16, September.
    12. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    13. Zhu, Huiming & Duan, Lijun & Guo, Yawei & Yu, Keming, 2016. "The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression," Economic Modelling, Elsevier, vol. 58(C), pages 237-248.
    14. Bianco, Vincenzo & Cascetta, Furio & Marino, Alfonso & Nardini, Sergio, 2019. "Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues," Energy, Elsevier, vol. 170(C), pages 120-130.
    15. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    16. Mariola Piłatowska & Andrzej Geise & Aneta Włodarczyk, 2020. "The Effect of Renewable and Nuclear Energy Consumption on Decoupling Economic Growth from CO 2 Emissions in Spain," Energies, MDPI, vol. 13(9), pages 1-18, April.
    17. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    18. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    19. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    20. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    21. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    22. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    23. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    24. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    25. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    26. Cheng Cheng & Xiaohang Ren & Zhen Wang & Yukun Shi, 2018. "The Impacts of Non-Fossil Energy, Economic Growth, Energy Consumption, and Oil Price on Carbon Intensity: Evidence from a Panel Quantile Regression Analysis of EU 28," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    27. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    28. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    29. Ozcan, Burcu & Tzeremes, Panayiotis G. & Tzeremes, Nickolaos G., 2020. "Energy consumption, economic growth and environmental degradation in OECD countries," Economic Modelling, Elsevier, vol. 84(C), pages 203-213.
    30. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    31. George E. Halkos & Eleni-Christina Gkampoura, 2021. "Examining the Linkages among Carbon Dioxide Emissions, Electricity Production and Economic Growth in Different Income Levels," Energies, MDPI, vol. 14(6), pages 1-24, March.
    32. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    33. Randolph Luca Bruno & Nauro Ferreira Campos & Saul Estrin, 2021. "The Effect on Foreign Direct Investment of Membership in the European Union," Journal of Common Market Studies, Wiley Blackwell, vol. 59(4), pages 802-821, July.
    34. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    35. Cemal Atici, 2009. "Carbon emissions in Central and Eastern Europe: environmental Kuznets curve and implications for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(3), pages 155-160.
    36. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Energy consumption, CO2 emissions, and economic growth: An ethical dilemma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 808-824.
    37. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    38. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    39. repec:bla:obuest:v:61:y:1999:i:0:p:653-70 is not listed on IDEAS
    40. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    41. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    42. Kearsley, Aaron & Riddel, Mary, 2010. "A further inquiry into the Pollution Haven Hypothesis and the Environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 69(4), pages 905-919, February.
    43. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Nabil Maalel, 2024. "Renewable Energy Transition, Trade Openness, and CO2 Emissions Nexus in the Middle East," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 434-441, May.
    3. Guangyu Ge & Yu Tang & Qian Zhang & Zhijiang Li & Xiejun Cheng & Decai Tang & Valentina Boamah, 2022. "The Carbon Emissions Effect of China’s OFDI on Countries along the “Belt and Road”," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    4. Alexandra Horobet & Irina Mnohoghitnei & Dan Gabriel Dumitrescu & Stefania Cristina Curea & Lucian Belascu, 2022. "An Empirical Assessment of the Financial Development – Environmental Quality Nexus in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 613-613, August.
    5. repec:fst:rfsisf:v:8:y:2023:i:special-june_2023:p:83-94 is not listed on IDEAS
    6. Mohammed Musah, 2023. "Stock market development and environmental quality in EU member countries: a dynamic heterogeneous approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11153-11187, October.
    7. Eryu Zhang & Xiaoyu He & Peng Xiao, 2022. "Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    8. Chia-Yun Huang & Ting-To Yu & Wei-Min Lin & Kung-Ming Chung & Keh-Chin Chang, 2022. "Energy Sustainability on an Offshore Island: A Case Study in Taiwan," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    2. H ctor F. Salazar-N ez & Francisco Venegas-Mart nez & Miguel Tinoco-Zerme o, 2020. "Impact of Energy Consumption and Carbon Dioxide Emissions on Economic Growth: Cointegrated Panel Data in 79 Countries Grouped by Income Level," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 218-226.
    3. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    4. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "An Appreciated Response of Disaggregated Energies Consumption towards the Sustainable Growth: A debate on G-10 Economies," Energy, Elsevier, vol. 254(PA).
    5. Mohd Arshad Ansari & Muhammed Ashiq Villanthenkodath & Vaseem Akram & Badri Narayan Rath, 2023. "The nexus between ecological footprint, economic growth, and energy poverty in sub-Saharan Africa: a technological threshold approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7823-7850, August.
    6. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    7. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    8. Xuejiao Ma & Qichuan Jiang, 2019. "How to Balance the Trade-off between Economic Development and Climate Change?," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    9. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    10. Kahia, Montassar & Ben Aïssa, Mohamed Safouane & Charfeddine, Lanouar, 2016. "Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs)," Energy, Elsevier, vol. 116(P1), pages 102-115.
    11. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    12. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    13. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    14. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    15. Omri, Anis, 2018. "Entrepreneurship, sectoral outputs and environmental improvement: International evidence," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 46-55.
    16. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    17. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    18. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    19. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    20. Shabana Parveen & Saleem Khan & Muhammad Abdul Kamal & Muhammad Ali Abbas & Aamir Aijaz Syed & Simon Grima, 2023. "The Influence of Industrial Output, Financial Development, and Renewable and Non-Renewable Energy on Environmental Degradation in Newly Industrialized Countries," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2858-:d:555443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.