IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3332-d1065349.html
   My bibliography  Save this article

Ordering Technique for the Maximum Power Point Tracking of an Islanded Solar Photovoltaic System

Author

Listed:
  • Muhammad Mateen Afzal Awan

    (Department of Electrical Engineering, University of Management and Technology Lahore, Sialkot 51310, Punjab, Pakistan)

  • Aamer Bilal Asghar

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Punjab, Pakistan)

  • Muhammad Yaqoob Javed

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Punjab, Pakistan)

  • Zsolt Conka

    (Faculty of Electrical Engineering and Informatics, Department of Electric Power Engineering, Technical University of Kosice, 040 01 Kosice, Slovakia)

Abstract

The world’s attention has turned towards renewable energy due to escalating energy demands, declining fossil fuel reservoirs, greenhouse gas emissions, and the unreliability of conventional energy systems. The sun is the only renewable energy source that is available every day for a specific period of time. Solar photovoltaic (PV) technology is known for its direct conversion of sunlight into electricity using the photoelectric effect. However, due to the non-linear electrical characteristics, the power output of solar PV cells is bound to a lower value and can not produce the power of which it is capable. To extract the maximum possible power, the PV cell needs to be operated at its maximum power point (MPP) uninterruptedly under numerous weather conditions. Therefore, an electronic circuit driven by a set of rules known as an algorithm is utilized. To date, the flower pollination algorithm (FPA) is one of the most renowned maximum power point tracking (MPPT) algorithms due to its effective tracking ability at the local and global positions. After an in-depth analysis of the design, strengths, weaknesses, and opportunities of the FPA algorithm, we have proposed an additional filtration and distribution process named “Random walk” along with the ordering of solutions, to improve its efficiency and tracking time. The proposed structure named “Ordered FPA” has outperformed the renowned FPA algorithm under various weather conditions at all the standard benchmarks. Simulations are performed in MATLAB/Simulink.

Suggested Citation

  • Muhammad Mateen Afzal Awan & Aamer Bilal Asghar & Muhammad Yaqoob Javed & Zsolt Conka, 2023. "Ordering Technique for the Maximum Power Point Tracking of an Islanded Solar Photovoltaic System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3332-:d:1065349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abhishek Sharma & Abhinav Sharma & Vibhu Jately & Moshe Averbukh & Shailendra Rajput & Brian Azzopardi, 2022. "A Novel TSA-PSO Based Hybrid Algorithm for GMPP Tracking under Partial Shading Conditions," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    4. Anjan Debnath & Temitayo O. Olowu & Imtiaz Parvez & Md Golam Dastgir & Arif Sarwat, 2020. "A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 13(12), pages 1-15, June.
    5. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont & Zia-ur-Rehman, 2022. "Economic Integration of Renewable and Conventional Power Sources—A Case Study," Energies, MDPI, vol. 15(6), pages 1-20, March.
    6. Adeel Feroz Mirza & Majad Mansoor & Qiang Ling & Muhammad Imran Khan & Omar M. Aldossary, 2020. "Advanced Variable Step Size Incremental Conductance MPPT for a Standalone PV System Utilizing a GA-Tuned PID Controller," Energies, MDPI, vol. 13(16), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yecid Muñoz & Ciro Alfonso Suarez & Adalberto Ospino Castro & Omar Julián López, 2024. "Technical and Financial Analysis for the Implementation of Small-scale Self-generation Projects, based on Grid-Tied Photovoltaic Solar Energy, for Residential Users under Colombian Regulations," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 197-205, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    2. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    3. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    4. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    5. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    6. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    7. Omer Saleem & Shehryaar Ali & Jamshed Iqbal, 2023. "Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    9. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
    10. Ahmed G. Abo-Khalil & Ibrahim I. El-Sharkawy & Ali Radwan & Saim Memon, 2023. "Influence of a Hybrid MPPT Technique, SA-P&O, on PV System Performance under Partial Shading Conditions," Energies, MDPI, vol. 16(2), pages 1-17, January.
    11. Sy Ngo & Chian-Song Chiu & Thanh-Dong Ngo, 2022. "A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems," Energies, MDPI, vol. 15(20), pages 1-18, October.
    12. Ahmad Taher Azar & Azher M. Abed & Farah Ayad Abdulmajeed & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Zainab Abdulateef Rashed & Zahraa Sabah Hashim & Mo, 2022. "A New Nonlinear Controller for the Maximum Power Point Tracking of Photovoltaic Systems in Micro Grid Applications Based on Modified Anti-Disturbance Compensation," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    13. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    14. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    15. Yang Meng & Zunliang Chen & Hui Cheng & Enpu Wang & Baohua Tan, 2023. "An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 16(3), pages 1-20, January.
    16. Srinivasan Vadivel & Boopathi C. Sengodan & Sridhar Ramasamy & Mominul Ahsan & Julfikar Haider & Eduardo M. G. Rodrigues, 2022. "Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array," Energies, MDPI, vol. 15(6), pages 1-17, March.
    17. Tiago H. de A. Mateus & José A. Pomilio & Ruben B. Godoy & João O. P. Pinto, 2022. "VSG Control Applied to Seven-Level PV Inverter for Partial Shading Impact Abatement," Energies, MDPI, vol. 15(17), pages 1-14, September.
    18. Miao Zhang & Keyu Zhuang & Tong Zhao & Xianli Chen & Jingze Xue & Zheng Qiao & Shuai Cui & Yunlong Gao, 2022. "Bus Voltage Control of Photovoltaic Grid Connected Inverter Based on Adaptive Linear Active Disturbance Rejection," Energies, MDPI, vol. 15(15), pages 1-20, July.
    19. Hasan M. Salman & Jagadeesh Pasupuleti & Ahmad H. Sabry, 2023. "Review on Causes of Power Outages and Their Occurrence: Mitigation Strategies," Sustainability, MDPI, vol. 15(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3332-:d:1065349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.