IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2851-d1057797.html
   My bibliography  Save this article

A Study of Microfiber Phytoremediation in Vertical Hydroponics

Author

Listed:
  • Naiara dos Santos

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK)

  • Dominic Clyde-Smith

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK)

  • Ying Qi

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK)

  • Fan Gao

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK)

  • Rosa Busquets

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK
    Faculty of Health, Science, Social Care and Education, School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames KT1 2EE, UK)

  • Luiza C. Campos

    (Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK)

Abstract

Microfibers (MFs) are one of the most prevalent microplastic (MP) sub-groups found in the aquatic environment released from many sources, including household laundry. MPs pose risks to the growth rate of terrestrial/aquatic biota and through biomagnification. Although MFs can be ingested by humans, their toxic effects and potential impact on public health are not yet clearly understood. Moreover, the removal of MPs, including MFs, during wastewater treatment is a challenge, since treatment plants are not designed to collect them. Therefore, this work aims to study the potential of the in situ phytoremediation of microfibers from a domestic washing machine effluent by growing barley in a vertical hydroponic system. The temporal variation in barley growth, water quality parameters, length distribution of MFs, and their removal were evaluated over 4 weeks. We investigated the MFs’ interaction with two systems: without barley (System NP) (used as a control) and with barley (System P). The results show the barley growth is negatively affected at the end of 4 weeks, mainly by the accumulation of phosphate and the presence of fungi. However, the level of dissolved oxygen in System P is satisfactory and the presence of MFs decreases considerably (mainly for MFs > 600 µm) from different interactions with the barley roots. These interactions were corroborated by microscopy images. The total removal of MFs through the hydroponic system was 52% in week 2, decreasing to 42%. This is the first time that the removal of MFs has been evaluated using vertical hydroponics, which demonstrates that this phytoremediation system can be used at the household level. It also shows that vertical hydroponics, as an experimental methodology, for the analyses of MFs’ impacts on plant health has merit. It is expected that this study will contribute to new investigations of MF removal by green technologies.

Suggested Citation

  • Naiara dos Santos & Dominic Clyde-Smith & Ying Qi & Fan Gao & Rosa Busquets & Luiza C. Campos, 2023. "A Study of Microfiber Phytoremediation in Vertical Hydroponics," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2851-:d:1057797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mary H. Ward & Rena R. Jones & Jean D. Brender & Theo M. De Kok & Peter J. Weyer & Bernard T. Nolan & Cristina M. Villanueva & Simone G. Van Breda, 2018. "Drinking Water Nitrate and Human Health: An Updated Review," IJERPH, MDPI, vol. 15(7), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    2. Letizia Pitto & Francesca Gorini & Fabrizio Bianchi & Elena Guzzolino, 2020. "New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    3. Valentina Drozd & Vladimir Saenko & Daniel I. Branovan & Kate Brown & Shunichi Yamashita & Christoph Reiners, 2021. "A Search for Causes of Rising Incidence of Differentiated Thyroid Cancer in Children and Adolescents after Chernobyl and Fukushima: Comparison of the Clinical Features and Their Relevance for Treatmen," IJERPH, MDPI, vol. 18(7), pages 1-12, March.
    4. Marco Taussi & Caterina Gozzi & Orlando Vaselli & Jacopo Cabassi & Matia Menichini & Marco Doveri & Marco Romei & Alfredo Ferretti & Alma Gambioli & Barbara Nisi, 2022. "Contamination Assessment and Temporal Evolution of Nitrates in the Shallow Aquifer of the Metauro River Plain (Adriatic Sea, Italy) after Remediation Actions," IJERPH, MDPI, vol. 19(19), pages 1-24, September.
    5. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    6. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    7. Yibin Huang & Yanmei Li & Peter S. K. Knappett & Daniel Montiel & Jianjun Wang & Manuel Aviles & Horacio Hernandez & Itza Mendoza-Sanchez & Isidro Loza-Aguirre, 2022. "Water Quality Assessment Bias Associated with Long-Screened Wells Screened across Aquifers with High Nitrate and Arsenic Concentrations," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    8. Gonzalez, Rodrigo Barbone & Haas Ornelas, José Renato & Silva, Thiago Christiano, 2023. "The Value of Clean Water: Evidence from an Environmental Disaster," IDB Publications (Working Papers) 13273, Inter-American Development Bank.
    9. Angelo Earvin Sy Choi & Benny Marie B. Ensano & Jurng-Jae Yee, 2021. "Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    10. Adrián Hernández-Fernández & Eduardo Iniesta-López & Yolanda Garrido & Ioannis A. Ieropoulos & Francisco J. Hernández-Fernández, 2023. "Microbial Fuel Cell Using a Novel Ionic-Liquid-Type Membrane-Cathode Assembly with Heterotrophic Anodic Denitrification for Slurry Treatment," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    11. Marijana Savin & Aleksandra Vrkatić & Danijela Dedić & Tomislav Vlaški & Ivana Vorgučin & Jelena Bjelanović & Marija Jevtic, 2022. "Additives in Children’s Nutrition—A Review of Current Events," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    12. Ibrahim Zaganjor & Thomas J. Luben & Tania A. Desrosiers & Alexander P. Keil & Lawrence S. Engel & Adrian M. Michalski & Suzan L. Carmichael & Wendy N. Nembhard & Gary M. Shaw & Jennita Reefhuis & Mah, 2020. "Maternal Exposure to Disinfection By-Products and Risk of Hypospadias in the National Birth Defects Prevention Study (2000–2005)," IJERPH, MDPI, vol. 17(24), pages 1-16, December.
    13. Chai, Yuan & J. Pannell, David & G. Pardey, Philip, 2023. "Nudging farmers to reduce water pollution from nitrogen fertilizer," Food Policy, Elsevier, vol. 120(C).
    14. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    15. Pernille Jul Clemmensen & Nis Brix & Jörg Schullehner & Anne Gaml-Sørensen & Gunnar Toft & Sandra Søgaard Tøttenborg & Ninna Hinchely Ebdrup & Karin Sørig Hougaard & Birgitte Hansen & Torben Sigsgaard, 2022. "Nitrate in Maternal Drinking Water during Pregnancy and Measures of Male Fecundity in Adult Sons," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    16. Yifan Zhou & Yingying Zhu & Jinyuan Zhu & Chaoran Li & Geng Chen, 2023. "A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes," IJERPH, MDPI, vol. 20(4), pages 1-27, February.
    17. Angela DeRidder & Sowjanya Kalluri & Veera Holdai, 2020. "A Retrospective Chart Review Evaluating the Relationship between Cancer Diagnosis and Residential Water Source on the Lower Eastern Shore of Maryland, USA," IJERPH, MDPI, vol. 18(1), pages 1-13, December.
    18. Ian D. Buller & Deven M. Patel & Peter J. Weyer & Anna Prizment & Rena R. Jones & Mary H. Ward, 2021. "Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
    19. Yerbolat Sailaukhanuly & Seitkhan Azat & Makhabbat Kunarbekova & Adylkhan Tovassarov & Kainaubek Toshtay & Zhandos Tauanov & Lars Carlsen & Ronny Berndtsson, 2023. "Health Risk Assessment of Nitrate in Drinking Water with Potential Source Identification: A Case Study in Almaty, Kazakhstan," IJERPH, MDPI, vol. 21(1), pages 1-14, December.
    20. Minjin Lee & Charles A. Stock & Elena Shevliakova & Sergey Malyshev & Maureen Beaudor & Nicolas Vuichard, 2024. "Uneven consequences of global climate mitigation pathways on regional water quality in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2851-:d:1057797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.