IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2797-d1057421.html
   My bibliography  Save this article

Methodology to Estimate the Impact of the DC to AC Power Ratio, Azimuth, and Slope on Clipping Losses of Solar Photovoltaic Inverters: Application to a PV System Located in Valencia Spain

Author

Listed:
  • Dácil Díaz-Bello

    (Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain)

  • Carlos Vargas-Salgado

    (Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
    Departamento de Ingeniería Eléctrica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Jesus Águila-León

    (Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
    Departamento de Estudios del Agua y de la Energía, Universidad de Guadalajara, Guadalajara 44410, Mexico)

  • Fabián Lara-Vargas

    (Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
    Programa de Ingeniería Electrónica, Grupo de Investigación ITEM, Universidad Pontificia Bolivariana Seccional Montería, Montería 230001, Colombia)

Abstract

Renewable power capacity sets records annually, driven by solar photovoltaic power, which accounts for more than half of all renewable power expansion in 2021. In this sense, photovoltaic system design must be correctly defined before system installation to generate the maximum quantity of energy at the lowest possible cost. The proposed study analyses the oversizing of the solar array vs. the capacity of the solar inverter, seeking low clipping losses in the inverter. A real 4.2 kWp residential PV installation was modelled and validated using the software SAM and input data from different sources, such as a weather station for weather conditions, ESIOS for electricity rates, and FusionSolar to obtain energy data from the PV installation. Once data were validated through SAM, the DC to AC ratio was varied between 0.9 and 2.1. The azimuth and slope sensitivity analyses were performed regarding clipping inverter losses. Results have been evaluated through the energy generated and the discounted payback period, showing that, depending on the weather conditions, slope, and azimuth, among others, it is advisable to increase the DC to AC ratio to values between 1.63 and 1.87, implying low discounted payback periods of about 8 to 9 years. In addition, it was observed that inverter clipping losses significantly vary depending on the defined azimuth and slope.

Suggested Citation

  • Dácil Díaz-Bello & Carlos Vargas-Salgado & Jesus Águila-León & Fabián Lara-Vargas, 2023. "Methodology to Estimate the Impact of the DC to AC Power Ratio, Azimuth, and Slope on Clipping Losses of Solar Photovoltaic Inverters: Application to a PV System Located in Valencia Spain," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2797-:d:1057421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    2. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    3. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    4. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micheli, Leonardo & Muller, Matthew & Theristis, Marios & Smestad, Greg P. & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Quantifying the impact of inverter clipping on photovoltaic performance and soiling losses," Renewable Energy, Elsevier, vol. 225(C).
    2. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    3. Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    4. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    5. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    6. Nicolás Müller & Samir Kouro & Pericle Zanchetta & Patrick Wheeler & Gustavo Bittner & Francesco Girardi, 2019. "Energy Storage Sizing Strategy for Grid-Tied PV Plants under Power Clipping Limitations," Energies, MDPI, vol. 12(9), pages 1-17, May.
    7. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    9. Rodrigo, P.M., 2020. "Balancing the shading impact in utility-scale dual-axis tracking concentrator photovoltaic power plants," Energy, Elsevier, vol. 210(C).
    10. Schleifer, Anna H. & Murphy, Caitlin A. & Cole, Wesley J. & Denholm, Paul, 2022. "Exploring the design space of PV-plus-battery system configurations under evolving grid conditions," Applied Energy, Elsevier, vol. 308(C).
    11. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Export Constraints Applicable to Renewable Generation to Enhance Grid Hosting Capacity," Energies, MDPI, vol. 17(11), pages 1-30, May.
    12. Tuyen Nguyen-Duc & Duong Nguyen-Dang & Thinh Le-Viet & Goro Fujita, 2022. "Continuous Reconfiguration Framework for Photovoltaic Array under Variable Partial Shading Conditions: Heuristic-Based Algorithms with Optimizing Switching Operation," Energies, MDPI, vol. 15(18), pages 1-25, September.
    13. Balfour, John & Hill, Roger & Walker, Andy & Robinson, Gerald & Gunda, Thushara & Desai, Jal, 2021. "Masking of photovoltaic system performance problems by inverter clipping and other design and operational practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    15. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
    16. Kim, James Hyungkwan & Mills, Andrew D. & Wiser, Ryan & Bolinger, Mark & Gorman, Will & Crespo Montañes, Cristina & O'Shaughnessy, Eric, 2021. "Project developer options to enhance the value of solar electricity as solar and storage penetrations increase," Applied Energy, Elsevier, vol. 304(C).
    17. Thunchanok Kaewnukultorn & Sergio Basilio Sepúlveda-Mora & Ryan Purnell & Steven Hegedus, 2024. "Electrical and Financial Impacts of Inverter Clipping on Oversized Bifacial Photovoltaic Systems," Energies, MDPI, vol. 17(22), pages 1-18, November.
    18. Philippe Camail & Bruno Allard & Maxime Darnon & Charles Joubert & Christian Martin & João Pedro F. Trovão, 2023. "Overview of DC/DC Converters for Concentrating Photovoltaics (CPVs)," Energies, MDPI, vol. 16(20), pages 1-18, October.
    19. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    20. Mayer, Martin János & Yang, Dazhi, 2024. "Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow," Applied Energy, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2797-:d:1057421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.