IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921015890.html
   My bibliography  Save this article

Exploring the design space of PV-plus-battery system configurations under evolving grid conditions

Author

Listed:
  • Schleifer, Anna H.
  • Murphy, Caitlin A.
  • Cole, Wesley J.
  • Denholm, Paul

Abstract

In this study, we explore how the energy and capacity values of coupled systems comprising solar photovoltaic arrays and battery storage (PV-plus-battery systems) could evolve over time based on the evolution of the bulk power system. Using a price-taker model with simulated hourly energy and capacity prices projected from the present to 2050, we simulate the revenue-maximizing dispatch of a range of DC-coupled PV-plus-battery configurations in three locations in the United States. These configurations are defined by the inverter loading ratio (ILR, the ratio of the PV array capacity to the inverter capacity, which we vary from 1.4 to 2.6) and the battery-inverter ratio (BIR, the ratio of the battery power capacity to the inverter capacity, which we vary from 0.25 to 1.0). Based on each configuration’s total value, we estimate the breakeven costs needed to justify each incremental increase in ILR (holding BIR constant) or BIR (holding ILR constant). We find that, in a future with low-cost renewable energy technologies, PV-plus-battery system ILRs can be economically increased to around 2.0–2.4 at a BIR of 1.0, depending on solar resource. Our results indicate that a likely evolution of PV-plus-battery system design will be increasingly greater battery power capacity to mitigate the declining PV capacity value, which will, in turn, enable increasingly higher ILRs to further increase energy value. The extent to which PV-plus-systems will be deployed with increasingly higher ILRs depends primarily on whether PV cost declines outpace declining value and increasing curtailment over time.

Suggested Citation

  • Schleifer, Anna H. & Murphy, Caitlin A. & Cole, Wesley J. & Denholm, Paul, 2022. "Exploring the design space of PV-plus-battery system configurations under evolving grid conditions," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015890
    DOI: 10.1016/j.apenergy.2021.118339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Jiachen & Jafari, Mehdi & Botterud, Audun, 2022. "Planning low-carbon distributed power systems: Evaluating the role of energy storage," Energy, Elsevier, vol. 238(PA).
    2. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    3. Mills, Andrew D. & Rodriguez, Pía, 2020. "A simple and fast algorithm for estimating the capacity credit of solar and storage," Energy, Elsevier, vol. 210(C).
    4. Camps, Xavier & Velasco, Guillermo & de la Hoz, Jordi & Martín, Helena, 2015. "Contribution to the PV-to-inverter sizing ratio determination using a custom flexible experimental setup," Applied Energy, Elsevier, vol. 149(C), pages 35-45.
    5. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    6. Ward, K.R. & Green, R. & Staffell, I., 2019. "Getting prices right in structural electricity market models," Energy Policy, Elsevier, vol. 129(C), pages 1190-1206.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Cutler, Nicholas J. & Boerema, Nicholas D. & MacGill, Iain F. & Outhred, Hugh R., 2011. "High penetration wind generation impacts on spot prices in the Australian national electricity market," Energy Policy, Elsevier, vol. 39(10), pages 5939-5949, October.
    9. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    10. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    11. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    12. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    13. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    14. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    15. Nicolás Müller & Samir Kouro & Pericle Zanchetta & Patrick Wheeler & Gustavo Bittner & Francesco Girardi, 2019. "Energy Storage Sizing Strategy for Grid-Tied PV Plants under Power Clipping Limitations," Energies, MDPI, vol. 12(9), pages 1-17, May.
    16. Cole, Wesley & Greer, Daniel & Ho, Jonathan & Margolis, Robert, 2020. "Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage," Applied Energy, Elsevier, vol. 279(C).
    17. Mills, Andrew D. & Wiser, Ryan H., 2015. "Strategies to mitigate declines in the economic value of wind and solar at high penetration in California," Applied Energy, Elsevier, vol. 147(C), pages 269-278.
    18. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kishor, Yugal & Patel, R.N. & Kumar Sahu, Lalit, 2023. "Reliability analysis of modified Z-source based high gain converter for PV application," Applied Energy, Elsevier, vol. 332(C).
    2. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    3. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    4. Eikeland, Odin Foldvik & Kelsall, Colin C. & Buznitsky, Kyle & Verma, Shomik & Bianchi, Filippo Maria & Chiesa, Matteo & Henry, Asegun, 2023. "Power availability of PV plus thermal batteries in real-world electric power grids," Applied Energy, Elsevier, vol. 348(C).
    5. Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    2. Kim, James Hyungkwan & Mills, Andrew D. & Wiser, Ryan & Bolinger, Mark & Gorman, Will & Crespo Montañes, Cristina & O'Shaughnessy, Eric, 2021. "Project developer options to enhance the value of solar electricity as solar and storage penetrations increase," Applied Energy, Elsevier, vol. 304(C).
    3. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    6. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    7. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    8. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    9. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    10. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    11. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    12. María Blecua-de-Pedro & Maryori C. Díaz-Ramírez, 2021. "Assessment of Potential Barriers to the Implementation of an Innovative AB-FB Energy Storage System under a Sustainable Perspective," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    13. Mahler, Valentin & Girard, Robin & Kariniotakis, Georges, 2022. "Data-driven structural modeling of electricity price dynamics," Energy Economics, Elsevier, vol. 107(C).
    14. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    15. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    16. Ward, K.R. & Green, R. & Staffell, I., 2019. "Getting prices right in structural electricity market models," Energy Policy, Elsevier, vol. 129(C), pages 1190-1206.
    17. Stefano Bracco, 2020. "A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy," Energies, MDPI, vol. 13(20), pages 1-26, October.
    18. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    19. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    20. Wiesheu, Michael & Rutešić, Luka & Shukhobodskiy, Alexander Alexandrovich & Pogarskaia, Tatiana & Zaitcev, Aleksandr & Colantuono, Giuseppe, 2021. "RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings," Renewable Energy, Elsevier, vol. 179(C), pages 1036-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.