IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3878-d1138726.html
   My bibliography  Save this article

The Design and Processor-In-The-Loop Implementation of a Super-Twisting Control Algorithm Based on a Luenberger Observer for a Seamless Transition between Grid-Connected and Stand-Alone Modes in Microgrids

Author

Listed:
  • Ali Aillane

    (Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering (Lab-STA), National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia)

  • Karim Dahech

    (Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering (Lab-STA), National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia)

  • Larbi Chrifi-Alaoui

    (Laboratory of Innovative Technology (LTI, UR 3899), University of Picardie Jules Verne, 80000 Amiens, France)

  • Aissa Chouder

    (Electrical Engineering Laboratory, University Mohamed Boudiaf of M’sila, M’sila 28000, Algeria)

  • Tarak Damak

    (Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering (Lab-STA), National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia)

  • Abdelhak Hadjkaddour

    (Laboratory of Electrical Engineering and Automation, University Yahia Fares Medea, Medea 26000, Algeria)

  • Pascal Bussy

    (Laboratory of Innovative Technology (LTI, UR 3899), University of Picardie Jules Verne, 80000 Amiens, France)

Abstract

The abrupt transfer from grid-connected (GC) to stand-alone (SA) operation modes is one of the major issues that may threaten the stability of a distributed generation (DG) system. Furthermore, if the islanding mode happens, it is vital to take into consideration the load voltages or load current waveforms as soon as feasible. This paper develops an advanced control technique based on a super-twisting sliding mode controller (ST-SMC) for a three-phase inverter operating in both the GC and SA modes. This control scheme is proposed to ensure a smooth transition from the GC to SA mode and enhance the load voltage waveforms under the islanding mode. In addition, to minimize the operational costs of the system and the complexity of the studied model, a digital Luenberger observer (DLO) with a proper design is adopted for estimating the inverter-side current. The control scheme of the whole system switches between a current control mode during the GC mode and a voltage control mode during the SA mode. The super-twisting control algorithm is applied to the outer voltage control loop involved in the cascaded voltage/current control scheme in the SA mode. Simulation tests of a three-phase inverter are performed for the purpose of assessing the suggested control performance by using the PowerSim (PSIM) software and comparing it with a classical PI controller. Furthermore, a processor-in-the-loop (PIL) implementation in a DSP board TMS32F28335 while debugging is conducted using code composer studio 6.2.0. The obtained results show efficient control properties, such as a smooth transition among the microgrid (MG) operating modes, as well as effectiveness and robustness during both the GC and SA operation modes.

Suggested Citation

  • Ali Aillane & Karim Dahech & Larbi Chrifi-Alaoui & Aissa Chouder & Tarak Damak & Abdelhak Hadjkaddour & Pascal Bussy, 2023. "The Design and Processor-In-The-Loop Implementation of a Super-Twisting Control Algorithm Based on a Luenberger Observer for a Seamless Transition between Grid-Connected and Stand-Alone Modes in Micro," Energies, MDPI, vol. 16(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3878-:d:1138726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Shi & Guanglei Zhou & Peifeng Xu & Haihan Ye & Fei Tan, 2018. "The Integrated Switching Control Strategy for Grid-Connected and Islanding Operation of Micro-Grid Inverters Based on a Virtual Synchronous Generator," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Norma Anglani & Salvatore R. Di Salvo & Giovanna Oriti & Alexander L. Julian, 2023. "Steps towards Decarbonization of an Offshore Microgrid: Including Renewable, Enhancing Storage and Eliminating Need of Dump Load," Energies, MDPI, vol. 16(3), pages 1-18, January.
    3. Aya Amer & Khaled Shaban & Ahmed Gaouda & Ahmed Massoud, 2021. "Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators," Energies, MDPI, vol. 14(2), pages 1-19, January.
    4. Jae-Uk Lim & Il-seob Kwon & Hag-Wone Kim & Kwan-Yuhl Cho, 2019. "Seamless Transfer Algorithm of AC Microgrid Inverter Compensating Load Current for Weak Grid," Energies, MDPI, vol. 12(4), pages 1-15, February.
    5. Sarat Chandra Vegunta & Michael J. Higginson & Yashar E. Kenarangui & George Tsai Li & David W. Zabel & Mohammad Tasdighi & Azadeh Shadman, 2021. "AC Microgrid Protection System Design Challenges—A Practical Experience," Energies, MDPI, vol. 14(7), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Ali Khan & Ahteshamul Haque & Frede Blaabjerg & Varaha Satya Bharath Kurukuru & Huai Wang, 2021. "Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    2. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    3. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    5. Faisal Mumtaz & Haseeb Hassan Khan & Amad Zafar & Muhammad Umair Ali & Kashif Imran, 2022. "A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Álvaro Gutiérrez, 2022. "Optimization Trends in Demand-Side Management," Energies, MDPI, vol. 15(16), pages 1-3, August.
    7. Emad M. Ahmed & Rajarajeswari Rathinam & Suchitra Dayalan & George S. Fernandez & Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar, 2021. "A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    8. Aya Amer & Khaled Shaban & Ahmed Massoud, 2022. "Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes," Energies, MDPI, vol. 15(21), pages 1-20, November.
    9. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    10. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    11. Bożena Gajdzik & Rafał Nagaj & Radosław Wolniak & Dominik Bałaga & Brigita Žuromskaitė & Wiesław Wes Grebski, 2024. "Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries," Energies, MDPI, vol. 17(11), pages 1-38, May.
    12. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
    13. Nedim Tutkun & Luigi Scarcello & Carlo Mastroianni, 2023. "Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems," Sustainability, MDPI, vol. 15(11), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3878-:d:1138726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.