IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6069-d1535172.html
   My bibliography  Save this article

A Mini Review of the Impacts of Machine Learning on Mobility Electrifications

Author

Listed:
  • Kimiya Noor ali

    (Dipartimento di Sistemi e Informatica (DSI), University of Florence, 50139 Firenze, Italy)

  • Mohammad Hemmati

    (Center for Industrial Electronics, Institute of Mechanical and Electrical Engineering, University of Southern Denmark, 6400 Sønderborg, Denmark)

  • Seyed Mahdi Miraftabzadeh

    (Department of Energy, Politecnico di Milano, 20156 Milano, Italy)

  • Younes Mohammadi

    (Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden)

  • Navid Bayati

    (Center for Industrial Electronics, Institute of Mechanical and Electrical Engineering, University of Southern Denmark, 6400 Sønderborg, Denmark)

Abstract

Electromobility contributes to decreasing environmental pollution and fossil fuel dependence, as well as increasing the integration of renewable energy resources. The increasing interest in using electric vehicles (EVs), enhanced by machine learning (ML) algorithms for intelligent automation, has reduced the reliance on. This shift has created an interdependence between power, automatically, and transportation networks, adding complexity to their management and scheduling. Moreover, due to complex charging infrastructures, such as variations in power supply, efficiency, driver behaviors, charging demand, and electricity price, advanced techniques should be applied to predict a wide range of variables in EV performance. As the adoption of EVs continues to accelerate, the integration of ML and especially deep learning (DL) algorithms will play a pivotal role in shaping the future of sustainable transportation. This paper provides a mini review of the ML impacts on mobility electrification. The applications of ML are evaluated in various aspects of e-mobility, including battery management, range prediction, charging infrastructure optimization, autonomous driving, energy management, predictive maintenance, traffic management, vehicle-to-grid (V2G), and fleet management. The main advantages and challenges of models in the years 2013–2024 have been represented for all mentioned applications. Also, all new trends for future work and the strengths and weaknesses of ML models in various aspects of mobility transportation are covered. By discussing and reviewing research papers in this field, it is revealed that leveraging ML models can accelerate the transition to electric mobility, leading to cleaner, safer, and more sustainable transportation systems. This paper states that the dependence on big data for training, the high uncertainty of parameters affecting the performance of electric vehicles, and cybersecurity are the main challenges of ML in the e-mobility sector.

Suggested Citation

  • Kimiya Noor ali & Mohammad Hemmati & Seyed Mahdi Miraftabzadeh & Younes Mohammadi & Navid Bayati, 2024. "A Mini Review of the Impacts of Machine Learning on Mobility Electrifications," Energies, MDPI, vol. 17(23), pages 1-36, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6069-:d:1535172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    2. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    3. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Maroto Estrada, Pedro & de Lima, Daniela & Bauer, Peter H. & Mammetti, Marco & Bruno, Joan Carles, 2023. "Deep learning in the development of energy Management strategies of hybrid electric Vehicles: A hybrid modeling approach," Applied Energy, Elsevier, vol. 329(C).
    5. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    7. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    8. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    9. Li, Xiang & Lepour, Dorsan & Heymann, Fabian & Maréchal, François, 2023. "Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050," Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    2. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    3. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    7. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    8. Malewska, Kamila & Cyfert, Szymon & Chwiłkowska-Kubala, Anna & Mierzejewska, Katrzyna & Szumowski, Witold, 2024. "The missing link between digital transformation and business model innovation in energy SMEs: The role of digital organisational culture," Energy Policy, Elsevier, vol. 192(C).
    9. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    10. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    11. Sebastian Kussl & Andreas Wald, 2022. "Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    12. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    13. Velkovski, Bodan & Gjorgievski, Vladimir Z. & Markovski, Blagoja & Cundeva, Snezana & Markovska, Natasa, 2024. "A framework for shared EV charging in residential renewable energy communities," Renewable Energy, Elsevier, vol. 231(C).
    14. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    15. Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
    16. Ibrahim Tumay Gulbahar & Muhammed Sutcu & Abedalmuhdi Almomany & Babul Salam KSM Kader Ibrahim, 2023. "Optimizing Electric Vehicle Charging Station Location on Highways: A Decision Model for Meeting Intercity Travel Demand," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    17. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. Gao, Sichen & Zong, Yuhua & Ju, Fei & Wang, Qun & Huo, Weiwei & Wang, Liangmo & Wang, Tao, 2024. "Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving," Energy, Elsevier, vol. 304(C).
    19. Samuel M. Muhindo & Roland P. Malhamé & Geza Joos, 2021. "A Novel Mean Field Game-Based Strategy for Charging Electric Vehicles in Solar Powered Parking Lots," Energies, MDPI, vol. 14(24), pages 1-21, December.
    20. Nikitas, Alexandros & Cotet, Corneliu & Vitel, Alexandra-Elena & Nikitas, Nikolaos & Prato, Carlo, 2024. "Transport stakeholders’ perceptions of Mobility-as-a-Service: A Q-study of cultural shift proponents, policy advocates and technology supporters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6069-:d:1535172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.