IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2328-d1048355.html
   My bibliography  Save this article

Analysis of Five-Extraction Technologies’ Environmental Impact on the Polyphenols Production from Moringa oleifera Leaves Using the Life Cycle Assessment Tool Based on ISO 14040

Author

Listed:
  • Vasileios M. Pappas

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

  • Iordanis Samanidis

    (Korres S.A.—Natural Products, 57th km Athens-Lamia r., GR-32011 Inofyta, Greece)

  • Giorgos Stavropoulos

    (Korres S.A.—Natural Products, 57th km Athens-Lamia r., GR-32011 Inofyta, Greece)

  • Vassilis Athanasiadis

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

  • Theodoros Chatzimitakos

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

  • Eleni Bozinou

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

  • Dimitris P. Makris

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

  • Stavros I. Lalas

    (Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece)

Abstract

The present study examines, compares, and documents the environmental impact of five extraction techniques through Life Cycle Assessment (LCA). The material used was Moringa oleifera freeze-dried leaves and the assessment was based on their polyphenol content Three out of the five examined techniques are referred to in the literature as “green” techniques, namely Pulsed Electric Field (PEF), Microwave-Assisted Extraction (MAE), and Ultrasound-Assisted Extraction (UAE). The other two examined were conventional extraction techniques and, specifically, boiling water and maceration; the latter served as a control in this study. The analysis utilized special software (SimaPro ecoinvent) for the “cradle to gate” LCA, along with a sensitivity analysis of the model examining the variation in the environmental impact based on the origin of the source of electricity (renewable sources such as photovoltaic arcs), aiming to highlight the optimal technology choice. This LCA study’s Functional Unit (FU) was one gram (g) of extracted total polyphenols (dry) produced by a case-specific number of extraction cycles for each technology under assessment (considering their technical efficiency depicted as polyphenols yields), measured by the Folin–Ciocalteu method and expressed as mg Gallic Acid Equivalents per g of dry Moringa oleifera leaves. The study outcome indicates that PEF and MAE deliver the best environmental scores. The main contributing parameters are the Moringa oleifera leaves and the amount and origin of electricity used to make 1 FU. These parameters are dominant in the categories of freshwater ecotoxicity, marine ecotoxicity, human carcinogenic toxicity, and human non-carcinogenic. The better performance of these two techniques is due to the more efficient extraction with reduced electricity consumption, which can become even more environmentally friendly if replaced with renewable sources such as photovoltaic arcs.

Suggested Citation

  • Vasileios M. Pappas & Iordanis Samanidis & Giorgos Stavropoulos & Vassilis Athanasiadis & Theodoros Chatzimitakos & Eleni Bozinou & Dimitris P. Makris & Stavros I. Lalas, 2023. "Analysis of Five-Extraction Technologies’ Environmental Impact on the Polyphenols Production from Moringa oleifera Leaves Using the Life Cycle Assessment Tool Based on ISO 14040," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2328-:d:1048355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michail Tsangas & Ifigeneia Gavriel & Maria Doula & Flouris Xeni & Antonis A. Zorpas, 2020. "Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    2. Carmen Ferrara & Giovanni De Feo, 2018. "Life Cycle Assessment Application to the Wine Sector: A Critical Review," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    2. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    3. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Latika Bhatia & Harit Jha & Tanushree Sarkar & Prakash Kumar Sarangi, 2023. "Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    5. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    6. Paola Masotti & Andrea Zattera & Mario Malagoli & Paolo Bogoni, 2022. "Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    7. Marinos Stylianou & Iliana Papamichael & Irene Voukkali & Michail Tsangas & Michalis Omirou & Ioannis M. Ioannides & Antonis A. Zorpas, 2023. "LCA of Barley Production: A Case Study from Cyprus," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Giuliana Vinci & Sabrina Antonia Prencipe & Ada Abbafati & Matteo Filippi, 2022. "Environmental Impact Assessment of an Organic Wine Production in Central Italy: Case Study from Lazio," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    9. Judit Lovasné Avató & Viktoria Mannheim, 2022. "Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios," Energies, MDPI, vol. 15(15), pages 1-20, July.
    10. Trigo, Ana & Marta-Costa, Ana & Fragoso, Rui, 2023. "Improving sustainability assessment: A context-oriented classification analysis for the wine industry," Land Use Policy, Elsevier, vol. 126(C).
    11. Marc Jourdaine & Philippe Loubet & Stephane Trebucq & Guido Sonnemann, 2020. "A detailed quantitative comparison of the life cycle assessment of bottled wines using an original harmonization procedure," Post-Print hal-03253002, HAL.
    12. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    13. Antonis A. Zorpas & Maria K. Doula & Mejdi Jeguirim, 2021. "Waste Strategies Development in the Framework of Circular Economy," Sustainability, MDPI, vol. 13(23), pages 1-5, December.
    14. Yuval Tamar Hefler & Meidad Kissinger, 2023. "Grape Wine Cultivation Carbon Footprint: Embracing a Life Cycle Approach across Climatic Zones," Agriculture, MDPI, vol. 13(2), pages 1-11, January.
    15. Nicola Casolani & Emilio Chiodo & Lolita Liberatore, 2023. "Continuous Improvement of VIVA-Certified Wines: Analysis and Perspective of Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    16. Vassilis Litskas & Athanasia Mandoulaki & Ioannis N. Vogiatzakis & Nikolaos Tzortzakis & Menelaos Stavrinides, 2020. "Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    17. Moritz Wagner & Peter Stanbury & Tabea Dietrich & Johanna Döring & Joachim Ewert & Carlotta Foerster & Maximilian Freund & Matthias Friedel & Claudia Kammann & Mirjam Koch & Tom Owtram & Hans Reiner S, 2023. "Developing a Sustainability Vision for the Global Wine Industry," Sustainability, MDPI, vol. 15(13), pages 1-29, July.
    18. Duan Lu & Asad Iqbal & Feixiang Zan & Xiaoming Liu & Guanghao Chen, 2021. "Life-Cycle-Based Greenhouse Gas, Energy, and Economic Analysis of Municipal Solid Waste Management Using System Dynamics Model," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    19. Dorota Burchart & Magdalena Gazda-Grzywacz & Przemysław Grzywacz & Piotr Burmistrz & Katarzyna Zarębska, 2022. "Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel," Energies, MDPI, vol. 16(1), pages 1-18, December.
    20. Olimpia Martucci & Gabriella Arcese & Chiara Montauti & Alessia Acampora, 2019. "Social Aspects in the Wine Sector: Comparison between Social Life Cycle Assessment and VIVA Sustainable Wine Project Indicators," Resources, MDPI, vol. 8(2), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2328-:d:1048355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.