IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2318-d1049220.html
   My bibliography  Save this article

Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review

Author

Listed:
  • Latika Bhatia

    (Department of Microbiology & Bioinformatics, Atal Bihari Vajpayee University, Bilaspur 495001, India)

  • Harit Jha

    (Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India)

  • Tanushree Sarkar

    (Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India)

  • Prakash Kumar Sarangi

    (College of Agriculture, Central Agricultural University, Imphal 795004, India)

Abstract

There is world-wide generation of food waste daily in significant amounts, leading to depletion of natural resources and deteriorating air quality. One-third of global food produced is wasted laterally with the food value chain. Carbon footprint is an efficient way of communicating the issues related to climate change and the necessity of changing behavior. Valorization or utilization of food wastes helps in resolving issues related to environment pollution. Reduction in the carbon footprint throughout the chain of food supply makes the whole process eco-friendly. Prevailing food waste disposal systems focus on their economic and environmental viability and are putting efforts into using food waste as a resource input to agriculture. Effective and advanced waste management systems are adopted to deal with massive waste production so as to fill the gap between the production and management of waste disposal. Food waste biorefineries are a sustainable, eco-friendly, and cost-effective approach for the production of platform chemicals, biofuels, and other bio-based materials. These materials not only provide sustainable resources for producing various chemicals and materials but have the potential to reduce this huge environmental burden significantly. In this regard, technological advancement has occurred in past few years that has proven suitable for tackling this problem.

Suggested Citation

  • Latika Bhatia & Harit Jha & Tanushree Sarkar & Prakash Kumar Sarangi, 2023. "Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2318-:d:1049220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Abdus Samie & Ismet Boz & Salim Bagadeem & Ziyue Yu & Zhihui Li, 2022. "Food, Energy, and Water Nexus at Household Level: Do Sustainable Household Consumption Practices Promote Cleaner Environment?," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    2. Allegretti, G. & Montoya, M.A. & Bertussi, L.A.S. & Talamini, E., 2022. "When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Jaime E. Borbolla-Gaxiola & Andrew B. Ross & Valerie Dupont, 2022. "Multi-Variate and Multi-Response Analysis of Hydrothermal Carbonization of Food Waste: Hydrochar Composition and Solid Fuel Characteristics," Energies, MDPI, vol. 15(15), pages 1-19, July.
    4. Michail Tsangas & Ifigeneia Gavriel & Maria Doula & Flouris Xeni & Antonis A. Zorpas, 2020. "Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    5. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    6. Wen-Tien Tsai, 2020. "Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan," Resources, MDPI, vol. 9(5), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Miguel Lisboa & Matheus Bittencourt Pasquali & Antonia Isabelly dos Anjos & Ana Maria Sarinho & Eloi Duarte de Melo & Rogério Andrade & Leonardo Batista & Janaina Lima & Yasmin Diniz & Amanda Bar, 2024. "Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability," Sustainability, MDPI, vol. 16(18), pages 1-44, September.
    2. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    3. Shivali Sahota & Subodh Kumar & Lidia Lombardi, 2024. "Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects," Energies, MDPI, vol. 17(3), pages 1-27, January.
    4. Congying Liu & Mingdi Jiang, 2024. "Green Messaging in the Fast-Food Industry: The Role of Responsibility, Obligation, and Values in Driving Eco-Conscious Behavior," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    5. Sudhanshu Joshi & Manu Sharma & Banu Y. Ekren & Yigit Kazancoglu & Sunil Luthra & Mukesh Prasad, 2023. "Assessing Supply Chain Innovations for Building Resilient Food Supply Chains: An Emerging Economy Perspective," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash Kumar Sarangi & Priti Pal & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus, 2024. "Food Waste to Food Security: Transition from Bioresources to Sustainability," Resources, MDPI, vol. 13(12), pages 1-24, November.
    2. Djandja, Oraléou Sangué & Kang, Shimin & Huang, Zizhi & Li, Junqiao & Feng, Jiaqi & Tan, Zaiming & Salami, Adekunlé Akim & Lougou, Bachirou Guene, 2023. "Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass," Energy, Elsevier, vol. 271(C).
    3. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    4. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    5. Shi, Xingping & He, Qing & Liu, Yixue & An, Xugang & Zhang, Qianxu & Du, Dongmei, 2024. "Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit," Energy, Elsevier, vol. 292(C).
    6. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).
    7. Marinos Stylianou & Iliana Papamichael & Irene Voukkali & Michail Tsangas & Michalis Omirou & Ioannis M. Ioannides & Antonis A. Zorpas, 2023. "LCA of Barley Production: A Case Study from Cyprus," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Judit Lovasné Avató & Viktoria Mannheim, 2022. "Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios," Energies, MDPI, vol. 15(15), pages 1-20, July.
    9. Nicholas Davison & Aaron Brown & Andrew Ross, 2023. "Potential Greenhouse Gas Mitigation from Utilising Pig Manure and Grass for Hydrothermal Carbonisation and Anaerobic Digestion in the UK, EU, and China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    10. Feng, Hongyu & Cui, Jintao & Xu, Zhang & Hantoko, Dwi & Zhong, Li & Xu, Donghai & Yan, Mi, 2023. "Sewage sludge treatment via hydrothermal carbonization combined with supercritical water gasification: Fuel production and pollution degradation," Renewable Energy, Elsevier, vol. 210(C), pages 822-831.
    11. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).
    13. Antonis A. Zorpas & Maria K. Doula & Mejdi Jeguirim, 2021. "Waste Strategies Development in the Framework of Circular Economy," Sustainability, MDPI, vol. 13(23), pages 1-5, December.
    14. Yan, Mi & Liu, Yu & Wen, Xiaoqiang & Yang, Yayong & Cui, Jintao & Chen, Feng & Hantoko, Dwi, 2023. "Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production," Renewable Energy, Elsevier, vol. 215(C).
    15. Vassilis Litskas & Athanasia Mandoulaki & Ioannis N. Vogiatzakis & Nikolaos Tzortzakis & Menelaos Stavrinides, 2020. "Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    16. Vasileios M. Pappas & Iordanis Samanidis & Giorgos Stavropoulos & Vassilis Athanasiadis & Theodoros Chatzimitakos & Eleni Bozinou & Dimitris P. Makris & Stavros I. Lalas, 2023. "Analysis of Five-Extraction Technologies’ Environmental Impact on the Polyphenols Production from Moringa oleifera Leaves Using the Life Cycle Assessment Tool Based on ISO 14040," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    17. Pinthurat, Watcharakorn & Surinkaew, Tossaporn & Hredzak, Branislav, 2024. "An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Duan Lu & Asad Iqbal & Feixiang Zan & Xiaoming Liu & Guanghao Chen, 2021. "Life-Cycle-Based Greenhouse Gas, Energy, and Economic Analysis of Municipal Solid Waste Management Using System Dynamics Model," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    19. Dorota Burchart & Magdalena Gazda-Grzywacz & Przemysław Grzywacz & Piotr Burmistrz & Katarzyna Zarębska, 2022. "Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel," Energies, MDPI, vol. 16(1), pages 1-18, December.
    20. Kapil Khandelwal & Philip Boahene & Sonil Nanda & Ajay K. Dalai, 2023. "Hydrogen Production from Supercritical Water Gasification of Model Compounds of Crude Glycerol from Biodiesel Industries," Energies, MDPI, vol. 16(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2318-:d:1049220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.