IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1565-d1034903.html
   My bibliography  Save this article

Evaluation of Accident Risk Level Based on Construction Cost, Size and Facility Type

Author

Listed:
  • Saemi Bang

    (Department of Safety Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

  • Jaewook Jeong

    (Department of Safety Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

  • Jaehyun Lee

    (Department of Architecture, Honam University, Gwangju 62399, Republic of Korea)

  • Jaemin Jeong

    (Department of Safety Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

  • Jayho Soh

    (Hyundai Engineering and Construction, 75, Yulgok-ro, Jongno-gu, Seoul 03058, Republic of Korea)

Abstract

Compared with other industries such as manufacturing, the construction industry has a higher danger of fatalities. In Korea, the risk level in the construction industry is managed using the fatality rate per 10,000 construction workers. However, this statistic is lacking in determining the exact risk level because it does not consider the exact number of workers and fails to reflect the specific characteristics of the construction industry. In this study, the fatality rate is deduced by considering the facility type and the project size based on total cost. From the results obtained, considering the facility type, “Assembly” is seen to be the most dangerous facility type. Considering the project size based on total cost, “Less than 0.008 billion dollars” is the most dangerous construction scale. Considering both the facility type and the project size based on total cost, it was confirmed that the overall fatality rate could exceed the fatality rate respective to each facility type and project size. Using the proposed method, it is possible to determine the quantitative risk level considering specific characteristics of the construction industry.

Suggested Citation

  • Saemi Bang & Jaewook Jeong & Jaehyun Lee & Jaemin Jeong & Jayho Soh, 2023. "Evaluation of Accident Risk Level Based on Construction Cost, Size and Facility Type," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1565-:d:1034903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaehyun Lee & Jaewook Jeong & Jayho Soh & Jaemin Jeong, 2021. "Development of Framework for Estimating Fatality-Related Losses in the Korean Construction Industry," IJERPH, MDPI, vol. 18(16), pages 1-23, August.
    2. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    3. Kieu-Trang Pham & Duc-Nghia Vu & Phuc Le Hieu Hong & Chansik Park, 2020. "4D-BIM-Based Workspace Planning for Temporary Safety Facilities in Construction SMEs," IJERPH, MDPI, vol. 17(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Farouk Kineber & Maxwell Fordjour Antwi-Afari & Faris Elghaish & Ahmad M. A. Zamil & Mohammad Alhusban & Thikryat Jibril Obied Qaralleh, 2023. "Benefits of Implementing Occupational Health and Safety Management Systems for the Sustainable Construction Industry: A Systematic Literature Review," Sustainability, MDPI, vol. 15(17), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    2. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    3. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    4. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    5. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    6. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    7. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    8. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    9. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    10. Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
    11. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    12. Aven, Terje, 2013. "Probabilities and background knowledge as a tool to reflect uncertainties in relation to intentional acts," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 229-234.
    13. Deyun Zhou & Yongchuan Tang & Wen Jiang, 2017. "An Improved Belief Entropy and Its Application in Decision-Making," Complexity, Hindawi, vol. 2017, pages 1-15, March.
    14. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    15. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    16. Aven, Terje & Krohn, Bodil S., 2014. "A new perspective on how to understand, assess and manage risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 1-10.
    17. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    18. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    19. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    20. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1565-:d:1034903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.