IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16885-d1301007.html
   My bibliography  Save this article

Enhancing Short-Term Electrical Load Forecasting for Sustainable Energy Management in Low-Carbon Buildings

Author

Listed:
  • Meshari D. Alanazi

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Ahmad Saeed

    (Department of Computer Science and IT, Hazara University Mansehra, Khyber Pakhtunkhwa 21120, Pakistan)

  • Muhammad Islam

    (Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia)

  • Shabana Habib

    (Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia)

  • Hammad I. Sherazi

    (Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia)

  • Sheroz Khan

    (Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 56447, Saudi Arabia)

  • Mohammad Munawar Shees

    (Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 56447, Saudi Arabia)

Abstract

Accurate short-term forecasting of electrical energy loads is essential for optimizing energy management in low-carbon buildings. This research presents an innovative two-stage model designed to address the unique challenges of Electricity Load Forecasting (ELF). In the first phase, robust data preprocessing techniques are employed to handle issues such as outliers, missing values, and data normalization, which are common in electricity consumption datasets in the context of low-carbon buildings. This data preprocessing enhances data quality and reliability, laying the foundation for accurate modeling. Subsequently, an advanced data-driven modeling approach is introduced. The model combines a novel residual Convolutional Neural Network (CNN) with a layered Echo State Network (ESN) to capture both spatial and temporal dependencies in the data. This innovative modeling approach improves forecasting accuracy and is tailored to the specific complexities of electrical power systems within low-carbon buildings. The model performance is rigorously evaluated using datasets from low-carbon buildings, including the Individual-Household-Electric-Power-Consumption (IHEPC) dataset from residential houses in Sceaux, Paris, and the Pennsylvania–New Jersey–Maryland (PJM) dataset. Beyond traditional benchmarks, our model undergoes comprehensive testing on data originating from ten diverse regions within the PJM dataset. The results demonstrate a significant reduction in forecasting error compared to existing state-of-the-art models. This research’s primary achievement lies in its ability to offer an efficient and adaptable solution tailored to real-world electrical power systems in low-carbon buildings, thus significantly contributing to the broader framework of modeling, simulation, and analysis within the field.

Suggested Citation

  • Meshari D. Alanazi & Ahmad Saeed & Muhammad Islam & Shabana Habib & Hammad I. Sherazi & Sheroz Khan & Mohammad Munawar Shees, 2023. "Enhancing Short-Term Electrical Load Forecasting for Sustainable Energy Management in Low-Carbon Buildings," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16885-:d:1301007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altaf Hussain & Zulfiqar Ahmad Khan & Tanveer Hussain & Fath U Min Ullah & Seungmin Rho & Sung Wook Baik & Chun Wei, 2022. "A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting," Complexity, Hindawi, vol. 2022, pages 1-12, October.
    2. Luca Di Persio & Nicola Fraccarolo, 2023. "Energy Consumption Forecasts by Gradient Boosting Regression Trees," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    3. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    4. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    5. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    3. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    4. Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
    5. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    7. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    9. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    10. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    11. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    12. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    13. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    14. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    15. Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
    16. Nie, Ying & Liang, Ni & Wang, Jianzhou, 2021. "Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme," Applied Energy, Elsevier, vol. 301(C).
    17. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    18. Wen, Yan & Pan, Su & Li, Xinxin & Li, Zibo & Wen, Wuzhenghong, 2024. "Improving multi-site photovoltaic forecasting with relevance amplification: DeepFEDformer-based approach," Energy, Elsevier, vol. 299(C).
    19. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    20. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16885-:d:1301007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.