IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7040601.html
   My bibliography  Save this article

A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting

Author

Listed:
  • Altaf Hussain
  • Zulfiqar Ahmad Khan
  • Tanveer Hussain
  • Fath U Min Ullah
  • Seungmin Rho
  • Sung Wook Baik
  • Chun Wei

Abstract

For efficient energy distribution, microgrids (MG) provide significant assistance to main grids and act as a bridge between the power generation and consumption. Renewable energy generation resources, particularly photovoltaics (PVs), are considered as a clean source of energy but are highly complex, volatile, and intermittent in nature making their forecasting challenging. Thus, a reliable, optimized, and a robust forecasting method deployed at MG objectifies these challenges by providing accurate renewable energy production forecasting and establishing a precise power generation and consumption matching at MG. Furthermore, it ensures effective planning, operation, and acquisition from the main grid in the case of superior or inferior amounts of energy, respectively. Therefore, in this work, we develop an end-to-end hybrid network for automatic PV power forecasting, comprising three basic steps. Firstly, data preprocessing is performed to normalize, remove the outliers, and deal with the missing values prominently. Next, the temporal features are extracted using deep sequential modelling schemes, followed by the extraction of spatial features via convolutional neural networks. These features are then fed to fully connected layers for optimal PV power forecasting. In the third step, the proposed model is evaluated on publicly available PV power generation datasets, where its performance reveals lower error rates when compared to state-of-the-art methods.

Suggested Citation

  • Altaf Hussain & Zulfiqar Ahmad Khan & Tanveer Hussain & Fath U Min Ullah & Seungmin Rho & Sung Wook Baik & Chun Wei, 2022. "A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting," Complexity, Hindawi, vol. 2022, pages 1-12, October.
  • Handle: RePEc:hin:complx:7040601
    DOI: 10.1155/2022/7040601
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/7040601.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/7040601.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/7040601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiling Fan & Zhuang Ma & Wanwei Tang & Jing Liang & Pengfei Xu, 2024. "Using Crested Porcupine Optimizer Algorithm and CNN-LSTM-Attention Model Combined with Deep Learning Methods to Enhance Short-Term Power Forecasting in PV Generation," Energies, MDPI, vol. 17(14), pages 1-17, July.
    2. Meshari D. Alanazi & Ahmad Saeed & Muhammad Islam & Shabana Habib & Hammad I. Sherazi & Sheroz Khan & Mohammad Munawar Shees, 2023. "Enhancing Short-Term Electrical Load Forecasting for Sustainable Energy Management in Low-Carbon Buildings," Sustainability, MDPI, vol. 15(24), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7040601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.