IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15684-d1275459.html
   My bibliography  Save this article

Simulation Study of a Novel Solar Air-Source Heat Pump Heating System Based on Phase-Change Heat Storage

Author

Listed:
  • Panxue Liu

    (College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jianhui Zhao

    (College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jiamei Chen

    (College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

A traditional solar air-source heat pump heating system cannot effectively utilize solar energy, and it consumes large amounts of energy when operating during cold nights. Accordingly, a conventional heating system has been improved by phase-change heating to form a new phase-change thermal storage solar air-source heat pump heating system. Based on the TRNSYS simulation platform, a heating simulation study of the improved phase-change heating system was carried out in Xi’an City. The results show that the addition of phase-change thermal storage technology allows the heating system to make better use of solar energy, and the efficiency of the solar collector is increased by 5.9%; the presence of the phase-change material effectively reduces the rate of temperature drop inside the water tank, making the water supply temperature more stable; during the whole heating period, the improved phase-change heating system saved 484.91 kWh of operating energy, showing a very good energy-saving effect.

Suggested Citation

  • Panxue Liu & Jianhui Zhao & Jiamei Chen, 2023. "Simulation Study of a Novel Solar Air-Source Heat Pump Heating System Based on Phase-Change Heat Storage," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15684-:d:1275459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sterling, S.J. & Collins, M.R., 2012. "Feasibility analysis of an indirect heat pump assisted solar domestic hot water system," Applied Energy, Elsevier, vol. 93(C), pages 11-17.
    2. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    2. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
    4. Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
    5. Yan, Zhongjun & Zhu, Yuexiang & Liu, Lifang & Yu, Zhun (Jerry) & Li, Shuisheng & Zhang, Guoqiang, 2023. "Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design," Renewable Energy, Elsevier, vol. 218(C).
    6. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    7. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    8. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    9. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    10. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    11. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    12. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    13. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Andrea Frazzica & Marco Manzan & Valeria Palomba & Vincenza Brancato & Angelo Freni & Amedeo Pezzi & Bianca M. Vaglieco, 2022. "Experimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal Energy Storage for Hot Water Provision on Ships," Energies, MDPI, vol. 15(7), pages 1-23, April.
    15. F. Javier Batlles & Bartosz Gil & Svetlana Ushak & Jacek Kasperski & Marcos Luján & Diana Maldonado & Magdalena Nemś & Artur Nemś & Antonio M. Puertas & Manuel S. Romero-Cano & Sabina Rosiek & Mario G, 2020. "Development and Results from Application of PCM-Based Storage Tanks in a Solar Thermal Comfort System of an Institutional Building—A Case Study," Energies, MDPI, vol. 13(15), pages 1-24, July.
    16. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2017. "Techno-economic assessment of solar assisted heat pump system retrofit in the Canadian housing stock," Applied Energy, Elsevier, vol. 190(C), pages 439-452.
    17. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    18. Artur Nemś & Antonio M. Puertas, 2020. "Model for the Discharging of a Dual PCM Heat Storage Tank and Its Experimental Validation," Energies, MDPI, vol. 13(21), pages 1-16, October.
    19. Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.
    20. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15684-:d:1275459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.