IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007754.html
   My bibliography  Save this article

Analysis of the main influencing factors of waste heat utilization effectiveness in the tank storage receiving process of waxy crude oil under dynamic liquid level conditions

Author

Listed:
  • Sun, Wei
  • Zhang, Xudong
  • Liu, Bingxue
  • Zhao, Lixin
  • Cheng, Qinglin
  • Wang, Zhihua

Abstract

Tank receiving process as an indispensable part of the crude oil tank storage process, the study of waste heat utilization effectiveness in tank receiving process, thus reduces the frequency of tank heating and plays a key role in achieving the “dual carbon" targets of the relevant energy storage companies. This paper analyses the waste heat transfer characteristics of received oil in the tank storage receiving process under dynamic liquid level conditions. The density field inhomogeneity is innovatively adopted to reflect waste heat utilization effectiveness of the tank storage receiving process, quantitatively characterized the influencing mechanisms between the density field inhomogeneity inside the storage tank and the external dynamic thermal environment and the mixing conditions. The results show that tank storage receiving process has gone through the heat flow diffusion stage, heat flow accumulation stage and hot and cold oil mixture stage. The heat flow diffusion stage is mainly affected by convective heat transfer, the heat flow floatation behavior is caused by mixed convection and the heat flow diffusion behavior is caused by natural convection. After the newly received hot oil breaks through the original layer and form a new hot oil layer, the process enters into the heat flow accumulation stage. This stage is affected by convection in a similar way to the heat flow diffusion phase, but the natural convection on the oil continues to deepen. And the received oil waste heat utilization effectiveness by the external environmental temperature impact is deeper. With the hot oil layer continues to accumulate, the heat transfer mode is gradually transformed from convective heat transfer to heat conduction mode of heat transfer, the receiving process enters the hot and cold oil mixture stage, the cold oil layer in the tank to heat up rapidly, and the mixing temperature gradually becomes the main influencing factors of the received oil waste heat utilization. When the tank storage receiving process is over, the larger the flow rate of the received oil and the lower the temperature, the better the efficiency of the received oil waste heat utilization.

Suggested Citation

  • Sun, Wei & Zhang, Xudong & Liu, Bingxue & Zhao, Lixin & Cheng, Qinglin & Wang, Zhihua, 2024. "Analysis of the main influencing factors of waste heat utilization effectiveness in the tank storage receiving process of waxy crude oil under dynamic liquid level conditions," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007754
    DOI: 10.1016/j.renene.2024.120707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    2. Hai-Bo Zhao & Kun Wu & Jing-Feng Zhang, 2021. "Simulation Study on Active Air Flow Distribution Characteristics of Closed Heat Pump Drying System with Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Sterling, S.J. & Collins, M.R., 2012. "Feasibility analysis of an indirect heat pump assisted solar domestic hot water system," Applied Energy, Elsevier, vol. 93(C), pages 11-17.
    4. Xianlei Chen & Manqi Wang & Bin Wang & Huadong Hao & Haolei Shi & Zenan Wu & Junxue Chen & Limei Gai & Hengcong Tao & Baikang Zhu & Bohong Wang, 2023. "Energy Consumption Reduction and Sustainable Development for Oil & Gas Transport and Storage Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
    5. Sun, Wei & Liu, Yuduo & Li, Mingyang & Cheng, Qinglin & Zhao, Lixin, 2023. "Study on heat flow transfer characteristics and main influencing factors of waxy crude oil tank during storage heating process under dynamic thermal conditions," Energy, Elsevier, vol. 269(C).
    6. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wei & Liu, Yuduo & Li, Mingyang & Cheng, Qinglin & Zhao, Lixin, 2023. "Study on heat flow transfer characteristics and main influencing factors of waxy crude oil tank during storage heating process under dynamic thermal conditions," Energy, Elsevier, vol. 269(C).
    2. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
    3. Ye Zhang & Bin Li & Zhenfeng He & Wenyan Ou & Jiahao Zhong & Xuefeng Zhang & Mingang Meng & Changyou Li, 2022. "Temperature Field Simulation and Energy Analysis of a Heat Pump Tobacco Bulk Curing Barn," Energies, MDPI, vol. 15(22), pages 1-16, November.
    4. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    5. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    6. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    7. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    8. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    9. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    10. Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
    11. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    12. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    13. Ștefănica Eliza Vizitiu & Chérifa Abid & Andrei Burlacu & Robert Ștefan Vizitiu & Marius Costel Balan, 2024. "Strategic Optimization of Operational Parameters in a Low-Temperature Waste Heat Recovery System: A Numerical Approach," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    14. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    15. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    16. Hou, Senlei & Wu, Zhiwen & Mei, Guoxiong & Xiao, Liang & Li, Ziheng, 2024. "Investigation on the permeation-diffusion combination action mechanism for a novel oil storage method: The flexible oil storage in waters," Energy, Elsevier, vol. 286(C).
    17. Johnson, Geoffrey & Beausoleil-Morrison, Ian, 2016. "The calibration and validation of a model for predicting the performance of gas-fired tankless water heaters in domestic hot water applications," Applied Energy, Elsevier, vol. 177(C), pages 740-750.
    18. Wang, Guimei & Moayedi, Hossein & Thi, Quynh T. & Mirzaei, Mojtaba, 2024. "Evaluation of heating load energy performance in residential buildings through five nature-inspired optimization algorithms," Energy, Elsevier, vol. 302(C).
    19. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
    20. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.