IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15100-d1264061.html
   My bibliography  Save this article

Optimal Dispatch and Control Strategy of Park Micro-Energy Grid in Electricity Market

Author

Listed:
  • Qunru Zheng

    (Guangdong Key Laboratory of Green Energy Technology, South China University of Technology, Guangzhou 510641, China)

  • Ping Yang

    (Guangdong Key Laboratory of Green Energy Technology, South China University of Technology, Guangzhou 510641, China)

  • Yuhang Wu

    (Guangdong Key Laboratory of Green Energy Technology, South China University of Technology, Guangzhou 510641, China)

  • Zhen Xu

    (Guangdong Key Laboratory of Green Energy Technology, South China University of Technology, Guangzhou 510641, China)

  • Peng Zhang

    (Guangdong Key Laboratory of Green Energy Technology, South China University of Technology, Guangzhou 510641, China)

Abstract

In the existing research on the dispatch and control strategies of park micro-energy grids, the dispatch and control characteristics of controllable energy units, such as response delay, startup and shutdown characteristics, response speed, and sustainable response time, have not been taken into account. Without considering the dispatch and control characteristics of the controllable energy units, substantial deviation will occur in the execution of optimized dispatch and control strategies, resulting in economic losses in the electricity market and adverse effects on the safe operation of power systems. This paper proposes a unified model to describe the dispatch and control characteristics of various types of controlled energy units, based on which we develop a three-tier optimization dispatch and control strategy for the micro-energy grid, involving day-ahead, intra-day, and real-time stages. The day-ahead and intra-day optimization dispatch strategy is implemented to obtain the optimal reference values in the real-time stage for each controllable energy unit. In the real-time stage, a minimum variance control strategy based on d-step prediction is proposed. By considering the multi-dimensional control characteristics of controllable energy units, the real-time predictive control strategy aims to ensure that the controllable energy units can precisely follow the optimized dispatch plan. The simulation results show that when compared with the dispatching method optimized by the improved quantum particle swarm algorithm, the adoption of the optimal dispatch and control strategy proposed in this paper resulted in a 45.79% improvement in execution accuracy and a 2.38% reduction in the energy cost.

Suggested Citation

  • Qunru Zheng & Ping Yang & Yuhang Wu & Zhen Xu & Peng Zhang, 2023. "Optimal Dispatch and Control Strategy of Park Micro-Energy Grid in Electricity Market," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15100-:d:1264061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    2. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    4. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    5. Ju, Liwei & Tan, Qinliang & Lin, Hongyu & Mei, Shufang & Li, Nan & Lu, Yan & Wang, Yao, 2020. "A two-stage optimal coordinated scheduling strategy for micro energy grid integrating intermittent renewable energy sources considering multi-energy flexible conversion," Energy, Elsevier, vol. 196(C).
    6. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    2. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    3. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    4. Shiping Geng & Gengqi Wu & Caixia Tan & Dongxiao Niu & Xiaopeng Guo, 2021. "Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    5. Hang Liu & Yongcheng Wang & Shilin Nie & Yi Wang & Yu Chen, 2022. "Multistage Economic Scheduling Model of Micro-Energy Grids Considering Flexible Capacity Allocation," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    6. Guan, Zhimin & Lu, Chunyan & Li, Yiming & Wang, Jiangjiang, 2023. "Chance-constrained optimization of hybrid solar combined cooling, heating and power system considering energetic, economic, environmental, and flexible performances," Renewable Energy, Elsevier, vol. 212(C), pages 908-920.
    7. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    9. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    10. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    11. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    12. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    13. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    14. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    15. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    16. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    17. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    18. Jiang, Aihua & Yuan, Huihong & Li, Delong, 2021. "Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory," Energy, Elsevier, vol. 225(C).
    19. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    20. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15100-:d:1264061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.