IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15032-d1262568.html
   My bibliography  Save this article

Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation

Author

Listed:
  • Hameedullah Zaheb

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan
    Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan)

  • Mikaeel Ahmadi

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan
    Research Promotion Unit, Co-Creation Management Department, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Nisar Ahmad Rahmany

    (Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan)

  • Mir Sayed Shah Danish

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan
    Energy Systems (Chubu Electric Power) Funded Research Division, IMaSS (Institute of Materials and Systems for Sustainability), Nagoya University, Nagoya 464-8601, Japan)

  • Habibullah Fedayi

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

  • Atsushi Yona

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

Abstract

This study delves into power system flexibility, with a keen focus on the integration of variable renewable electricity generation into power grids. Two scenarios were analyzed. The base scenario revealed an aging grid, insufficient generation capacity, frequent outages, and little renewable energy generation (1.9%), along with a significant (71.23%) loss of load. In contrast, the investment scenario presented solutions including raising VRE capacity to 44%, adding 1000 MW capacity transmission lines, installing 200 MW capacity grid-scale battery storage, and technological enhancements. These interventions effectively eliminated loss of load, reinforcing energy resilience. Investments in CCGPP and grid-scale batteries proved instrumental in mitigating the variability of renewable energy. Improved transmission promised efficient power exchange and regional collaboration. The elimination of annualized energy spills and the removal of ramping constraints marked significant strides in enhancing power system flexibility. This research underscores the pivotal role of grid flexibility in accommodating VRE sources. By implementing the proposed optimal solutions, Afghanistan can lead the way toward a cleaner, more resilient, and more interconnected energy future. These findings offer a replicable framework for addressing similar challenges in integrating renewable energy sources globally and supporting the transition to sustainable and reliable energy.

Suggested Citation

  • Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15032-:d:1262568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    2. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    3. Mohammad Hossein Ahmadi & Seyyed Shahabaddin Hosseini Dehshiri & Seyyed Jalaladdin Hosseini Dehshiri & Ali Mostafaeipour & Khalid Almutairi & Hoa Xuan Ao & Mohammadhossein Rezaei & Kuaanan Techato, 2022. "A Thorough Economic Evaluation by Implementing Solar/Wind Energies for Hydrogen Production: A Case Study," Sustainability, MDPI, vol. 14(3), pages 1-30, January.
    4. Reikard, Gordon & Robertson, Bryson & Bidlot, Jean-Raymond, 2015. "Combining wave energy with wind and solar: Short-term forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 442-456.
    5. Jun Dong & Zhenjie Chen & Xihao Dou, 2022. "The Influence of Multiple Types of Flexible Resources on the Flexibility of Power System in Northwest China," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    6. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    7. Gul Ahmad Ludin & Akito Nakadomari & Atsushi Yona & Suresh Mikkili & Shriram Srinivasarangan Rangarajan & Edward Randolph Collins & Tomonobu Senjyu, 2022. "Technical and Economic Analysis of an HVDC Transmission System for Renewable Energy Connection in Afghanistan," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    8. Chu Donatus Iweh & Samuel Gyamfi & Emmanuel Tanyi & Eric Effah-Donyina, 2021. "Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits," Energies, MDPI, vol. 14(17), pages 1-34, August.
    9. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    10. Ershad, Ahmad Murtaza & Brecha, Robert J. & Hallinan, Kevin, 2016. "Analysis of solar photovoltaic and wind power potential in Afghanistan," Renewable Energy, Elsevier, vol. 85(C), pages 445-453.
    11. Hameedullah Zaheb & Habibullah Amiry & Mikaeel Ahmadi & Habibullah Fedayi & Sajida Amiry & Atsushi Yona, 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    12. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
    13. G. V. Brahmendra Kumar & Ratnam Kamala Sarojini & K. Palanisamy & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Large Scale Renewable Energy Integration: Issues and Solutions," Energies, MDPI, vol. 12(10), pages 1-17, May.
    14. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
    15. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    16. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hameedullah Zaheb & Obaidullah Obaidi & Sarban Mukhtar & Habiburahman Shirani & Mikaeel Ahmadi & Atsushi Yona, 2024. "Comprehensive Analysis and Prioritization of Sustainable Energy Resources Using Analytical Hierarchy Process," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
    2. Xueyang Zhang & Shengjun Huang & Qingxia Li & Rui Wang & Tao Zhang & Bo Guo, 2024. "Nodal Invulnerability Recovery Considering Power Generation Balance: A Bi-Objective Robust Optimization Framework," Mathematics, MDPI, vol. 12(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    2. Saheli, Mahdieh Arabzadeh & Lari, Kamran & Salehi, Gholamreza & Azad, Masoud Torabi, 2022. "Techno-economic assessment of a hybrid on grid PV-wave system: A case study in Caspian Sea," Renewable Energy, Elsevier, vol. 186(C), pages 596-608.
    3. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    4. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    5. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    6. Min, C.G. & Park, J.K. & Hur, D. & Kim, M.K., 2016. "A risk evaluation method for ramping capability shortage in power systems," Energy, Elsevier, vol. 113(C), pages 1316-1324.
    7. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    8. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    9. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    10. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    11. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    12. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    13. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    14. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System," Energies, MDPI, vol. 10(6), pages 1-12, June.
    15. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    16. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    17. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    18. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    19. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    20. Hua Zhou & Huahua Wu & Chengjin Ye & Shijie Xiao & Jun Zhang & Xu He & Bo Wang, 2019. "Integration Capability Evaluation of Wind and Photovoltaic Generation in Power Systems Based on Temporal and Spatial Correlations," Energies, MDPI, vol. 12(1), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15032-:d:1262568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.