IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1791-d1411276.html
   My bibliography  Save this article

Nodal Invulnerability Recovery Considering Power Generation Balance: A Bi-Objective Robust Optimization Framework

Author

Listed:
  • Xueyang Zhang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Shengjun Huang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Qingxia Li

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Rui Wang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tao Zhang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Bo Guo

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

Nodal invulnerability has broad application prospects because of its emphasis on the differences between buses. Due to their long-term exposure, transmission lines are inevitably susceptible to damage caused by physical attacks or extreme weather. Therefore, restoring nodal invulnerability through a remedial approach or the introduction of mobile generators (MGs) is pivotal for resisting subsequent damage after a system is attacked. However, the research devoted to this field is limited. In order to fill the gap, this study conducts research on the configuration of MGs considering power generation balance to recover nodal invulnerability. First, a defender–attacker–defender (DAD) model is established, corresponding to the bi-objective robust optimization problem. The upper-level model is formulated to obtain the optimal compromise configuration scheme, the uncertainties of the attacked lines are elucidated in the middle level, and the nodal N − k security criterion utilized for measuring nodal invulnerability cooperates in the lower level. Then, a modified column-and-constraint generation (C&CG) algorithm is developed to incorporate fuzzy mathematics into the solution framework. In addition, the nodal invulnerability settings are optimized under limited resources. Numerical experiments are executed on the IEEE 24-bus system to verify the effectiveness and rationality of the proposed method.

Suggested Citation

  • Xueyang Zhang & Shengjun Huang & Qingxia Li & Rui Wang & Tao Zhang & Bo Guo, 2024. "Nodal Invulnerability Recovery Considering Power Generation Balance: A Bi-Objective Robust Optimization Framework," Mathematics, MDPI, vol. 12(12), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1791-:d:1411276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    2. Gharavi, H. & Ardehali, M.M. & Ghanbari-Tichi, S., 2015. "Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions," Renewable Energy, Elsevier, vol. 78(C), pages 427-437.
    3. Zhong, Haiwang & Zhang, Guanglun & Tan, Zhenfei & Ruan, Guangchun & Wang, Xuan, 2022. "Hierarchical collaborative expansion planning for transmission and distribution networks considering transmission cost allocation," Applied Energy, Elsevier, vol. 307(C).
    4. Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    5. Cui, Lianbiao & Yue, Suyun & Nghiem, Xuan-Hoa & Duan, Mei, 2023. "Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of Russo-Ukrainian war," Resources Policy, Elsevier, vol. 81(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    2. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    3. Marius Eugen Țiboacă-Ciupăgeanu & Dana Alexandra Țiboacă-Ciupăgeanu, 2024. "Optimal Substation Placement: A Paradigm for Advancing Electrical Grid Sustainability," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    4. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    5. Ullah, Sana & Gozgor, Giray & Lu, Zhou, 2024. "How do conflicts affect energy security risk? Evidence from major energy-consuming economies," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 175-187.
    6. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
    8. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    9. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    10. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    11. Ulaa AlHaddad & Abdullah Basuhail & Maher Khemakhem & Fathy Elbouraey Eassa & Kamal Jambi, 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    12. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    13. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    14. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    15. Wu, Chuantao & Wang, Tao & Zhou, Dezhi & Cao, Shankang & Sui, Quan & Lin, Xiangning & Li, Zhengtian & Wei, Fanrong, 2023. "A distributed restoration framework for distribution systems incorporating electric buses," Applied Energy, Elsevier, vol. 331(C).
    16. Vesco, P. & Baliki, G. & Brück, T. & Döring, S. & Eriksson, A. & Fjelde, H. & Guha-Sapir, D. & Hall, J. & Knutsen, C. H. & Leis, M. R. & Mueller, H. & Rauh, C. & Rudolfsen, I. & Swain, A. & Timlick,, 2024. "The Impacts of Armed Conflict on Human Development: A Review of the Literature," Janeway Institute Working Papers 2426, Faculty of Economics, University of Cambridge.
    17. Zribi, Wissal & Boufateh, Talel & Guesmi, Khaled, 2023. "Climate uncertainty effects on bitcoin ecological footprint through cryptocurrency environmental attention," Finance Research Letters, Elsevier, vol. 58(PD).
    18. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    19. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1791-:d:1411276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.