IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp442-456.html
   My bibliography  Save this article

Combining wave energy with wind and solar: Short-term forecasting

Author

Listed:
  • Reikard, Gordon
  • Robertson, Bryson
  • Bidlot, Jean-Raymond

Abstract

While wind and solar have been the leading sources of renewable energy up to now, waves are increasingly being recognized as a viable source of power for coastal regions. This study analyzes integrating wave energy into the grid, in conjunction with wind and solar. The Pacific Northwest in the United States has a favorable mix of all three sources. Load and wind power series are obtained from government databases. Solar power is calculated from 12 sites over five states. Wave energy is calculated using buoy data, simulations of the ECMWF model, and power matrices for three types of wave energy converters. At the short horizons required for planning, the properties of the load and renewable energy are dissimilar. The load exhibits cycles at 24 h and seven days, seasonality and long-term trending. Solar power is dominated by the diurnal cycle and by seasonality, but also exhibits nonlinear variability due to cloud cover, atmospheric turbidity and precipitation. Wind power is dominated by large ramp events–irregular transitions between states of high and low power. Wave energy exhibits seasonal cycles and is generally smoother, although there are still some large transitions, particularly during winter months. Forecasting experiments are run over horizons of 1–4 h for the load and all three types of renewable energy. Waves are found to be more predictable than wind and solar. The forecast error at 1 h for the simulated wave farms is in the range of 5–7 percent, while the forecast errors for solar and wind are 17 and 22 percent. Geographic dispersal increases forecast accuracy. At the 1 h horizon, the forecast error for large-scale wave farms is 39–49 percent lower than at individual buoys. Grid integration costs are quantified by calculating balancing reserves. Waves show the lowest reserve costs, less than half wind and solar.

Suggested Citation

  • Reikard, Gordon & Robertson, Bryson & Bidlot, Jean-Raymond, 2015. "Combining wave energy with wind and solar: Short-term forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 442-456.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:442-456
    DOI: 10.1016/j.renene.2015.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    2. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    3. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    4. Retzler, Chris, 2006. "Measurements of the slow drift dynamics of a model Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 257-269.
    5. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    6. Cao, J.C. & Cao, S.H., 2006. "Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis," Energy, Elsevier, vol. 31(15), pages 3435-3445.
    7. Pinson, P. & Reikard, G. & Bidlot, J.-R., 2012. "Probabilistic forecasting of the wave energy flux," Applied Energy, Elsevier, vol. 93(C), pages 364-370.
    8. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    9. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    10. Parkinson, Simon C. & Dragoon, Ken & Reikard, Gordon & García-Medina, Gabriel & Özkan-Haller, H. Tuba & Brekken, Ted K.A., 2015. "Integrating ocean wave energy at large-scales: A study of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 76(C), pages 551-559.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
    2. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    3. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
    4. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    5. Roy, Sanjoy, 2021. "Analytical estimates of short duration mean power output and variability for deepwater wave power generation," Energy, Elsevier, vol. 230(C).
    6. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    7. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    8. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    9. Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023. "Forecasting inflation: The use of dynamic factor analysis and nonlinear combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 514-529, April.
    10. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    11. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    12. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    13. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    14. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    15. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    16. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    17. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    18. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    19. Rusu, Eugen & Guedes Soares, C., 2013. "Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 58(C), pages 34-49.
    20. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:442-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.