IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11617-d916304.html
   My bibliography  Save this article

The Influence of Multiple Types of Flexible Resources on the Flexibility of Power System in Northwest China

Author

Listed:
  • Jun Dong

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Zhenjie Chen

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Xihao Dou

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

Abstract

The development of renewable energy is of great significance to relieve the pressure on the energy supply and promote the low-carbon operation of the power system. However, the volatility of renewable energy, especially wind and solar energy, has a great impact on the safe and reliable operation of the power system. If we want to introduce renewable energy and ensure the safe and reliable operation of the power system, it is necessary for the power system to provide enough flexibility. Northwest China is rich in natural resources and an important area of power supply in China, which also faces the problem of insufficient flexibility. Therefore, based on the power system development and natural conditions in northwest China, this paper studies the key factors affecting the flexibility of the power system when renewable energy accounts for a large proportion, and proposes measures to improve the flexibility of the power system by using the power system optimization tool Flextool developed by IRENA.

Suggested Citation

  • Jun Dong & Zhenjie Chen & Xihao Dou, 2022. "The Influence of Multiple Types of Flexible Resources on the Flexibility of Power System in Northwest China," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11617-:d:916304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    2. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    3. Paul Calanter & Daniela Zisu, 2022. "EU Policies to Combat the Energy Crisis," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 10(1), pages 26-33, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    2. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    3. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Qinqin Cai & Yongqiang Zhu & Xiaohua Yang & Lin E, 2020. "Alterable Electricity Pricing Mechanism Considering the Deviation of Wind Power Prediction," Sustainability, MDPI, vol. 12(5), pages 1-12, March.
    6. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    7. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    8. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    9. Nak Heon Choi & Diego del Olmo & Diego Milian & Nadia El Kissi & Peter Fischer & Karsten Pinkwart & Jens Tübke, 2020. "Use of Carbon Additives towards Rechargeable Zinc Slurry Air Flow Batteries," Energies, MDPI, vol. 13(17), pages 1-12, August.
    10. Mingyue He & Zahra Soltani & Mojdeh Khorsand & Aaron Dock & Patrick Malaty & Masoud Esmaili, 2022. "Behavior-Aware Aggregation of Distributed Energy Resources for Risk-Aware Operational Scheduling of Distribution Systems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    11. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    12. Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
    13. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.
    14. Xia, Yuanxing & Xu, Qingshan & Tao, Siyu & Du, Pengwei & Ding, Yixing & Fang, Jicheng, 2022. "Preserving operation privacy of peer-to-peer energy transaction based on Enhanced Benders Decomposition considering uncertainty of renewable energy generations," Energy, Elsevier, vol. 250(C).
    15. Rapeepat Techarungruengsakul & Anongrit Kangrang, 2022. "Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    16. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    17. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.
    18. Mark Brian Dastas & Hwachang Song, 2019. "Renewable Energy Generation Assessment in Terms of Small-Signal Stability," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    19. Bangjun, Wang & Linyu, Cui & Feng, Ji & Yue, Wang, 2023. "Research on club convergence effect and its influencing factors of per capita energy consumption: Evidence from the data of 243 prefecture-level cities in China," Energy, Elsevier, vol. 263(PB).
    20. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11617-:d:916304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.