IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9498-d1511685.html
   My bibliography  Save this article

Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber

Author

Listed:
  • Fusong Wang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiaoqing Li

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Chao Huang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wangwang Zhou

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Dongxing Luan

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In recent years, self-healing, ultra-thin overlay has been recognized as an advanced technology and gradually applied in asphalt pavement maintenance, but its sustainability has not been well addressed quantitatively regarding practical maintenance projects. This study utilizes steel fiber as a media-induction material for self-healing, ultra-thin overlay and verifies its integrative benefits in terms of carbon emissions and economic costs from a six-year life-cycle perspective. The system framework and research boundary were developed to include the material extraction, on-site construction, later maintenance, and demolition phases. Meanwhile, carbon emissions and economic cost inventories were established through investigations of the test section of a maintenance project. The results indicated that self-healing, ultra-thin overlay could have benefits, with a reduction of 59.43% carbon emissions and 73.15% economic costs in the six-year life cycle, during which the material extraction phase generated over 50% of the carbon emissions and economic costs in self-healing, ultra-thin overlay due to the addition of steel fiber. Comparatively, the later maintenance phase caused the most environmental and financial impacts, with over half of the carbon emissions and costs. The obtained results could act as significant reference material for the sustainable maintenance implementation of asphalt pavement.

Suggested Citation

  • Fusong Wang & Xiaoqing Li & Chao Huang & Wangwang Zhou & Dongxing Luan, 2024. "Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9498-:d:1511685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael R. Gruber & Bernhard Hofko, 2023. "Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    2. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    3. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    4. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    5. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    6. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    7. Jingjing Wang & Chuan Sha & Sivmey Ly & Hao Wang & Yu Sun & Meng Guo, 2023. "Life Cycle Carbon Emissions and an Uncertainty Analysis of Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9498-:d:1511685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.