Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bubryur Kim & Dong-Eun Lee & Gang Hu & Yuvaraj Natarajan & Sri Preethaa & Arun Pandian Rathinakumar, 2022. "Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding," Mathematics, MDPI, vol. 10(2), pages 1-22, January.
- Ying Liu & Haoran Zhao & Jieguang Sun & Yahui Tang, 2022. "Digital Inclusive Finance and Family Wealth: Evidence from LightGBM Approach," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
- Rimsha Asad & Saud Altaf & Shafiq Ahmad & Adamali Shah Noor Mohamed & Shamsul Huda & Sofia Iqbal, 2023. "Achieving Personalized Precision Education Using the Catboost Model during the COVID-19 Lockdown Period in Pakistan," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
- Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
- Thi-Thu-Huong Le & Yustus Eko Oktian & Howon Kim, 2022. "XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
- Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
- Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
- Bing Xu & Youcheng Tan & Weibang Sun & Tianxing Ma & Hengyu Liu & Daguo Wang, 2023. "Study on the Prediction of the Uniaxial Compressive Strength of Rock Based on the SSA-XGBoost Model," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
- Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Matteo Rucco & Giovanna Viticchi & Lorenzo Falsetti, 2020. "Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
- Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
- Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
- Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2021. "Cohort Shapley value for algorithmic fairness," Papers 2105.07168, arXiv.org.
- Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
- Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
- Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
- Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
- Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Xizi Wang & Yakun Ma & Guangwei Hu, 2024. "Mobile Platforms as the Alleged Culprit for Work–Life Imbalance: A Data-Driven Method Using Co-Occurrence Network and Explainable AI Framework," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
- Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
- Kleijnen, Jack P.C., 2017.
"Regression and Kriging metamodels with their experimental designs in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Other publications TiSEM c592e895-1656-43c3-8c7e-f, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Discussion Paper 2015-035, Tilburg University, Center for Economic Research.
- Jia, Liangyuan & Shao, Wanyun & Wang, Jingjing & Qian, Yingying & Chen, Yingquan & Yang, Qingchun, 2024. "Machine learning-aided prediction of bio-BTX and olefins production from zeolite-catalyzed biomass pyrolysis," Energy, Elsevier, vol. 306(C).
- McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
More about this item
Keywords
building damage assessment; earthquake disaster; categorical feature; machine learning; LightGBM; interpretability method; Shapley additive explanation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13847-:d:1242027. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.