IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8707-d864066.html
   My bibliography  Save this article

XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems

Author

Listed:
  • Thi-Thu-Huong Le

    (IoT Research Center, Pusan National University, Busan 609735, Korea)

  • Yustus Eko Oktian

    (Blockchain Platform Research Center, Pusan National University, Busan 609735, Korea)

  • Howon Kim

    (School of Computer Science and Engineering, Pusan National University, Busan 609735, Korea)

Abstract

The Industrial Internet of Things (IIoT) has advanced digital technology and the fastest interconnection, which creates opportunities to substantially grow industrial businesses today. Although IIoT provides promising opportunities for growth, the massive sensor IoT data collected are easily attacked by cyber criminals. Hence, IIoT requires different high security levels to protect the network. An Intrusion Detection System (IDS) is one of the crucial security solutions, which aims to detect the network’s abnormal behavior and monitor safe network traffic to avoid attacks. In particular, the effectiveness of the Machine Learning (ML)-based IDS approach to building a secure IDS application is attracting the security research community in both the general cyber network and the specific IIoT network. However, most available IIoT datasets contain multiclass output data with imbalanced distributions. This is the main reason for the reduction in the detection accuracy of attacks of the ML-based IDS model. This research proposes an IDS for IIoT imbalanced datasets by applying the eXtremely Gradient Boosting (XGBoost) model to overcome this issue. Two modern IIoT imbalanced datasets were used to assess our proposed method’s effectiveness and robustness, X-IIoTDS and TON_IoT. The XGBoost model achieved excellent attack detection with F1 scores of 99.9% and 99.87% on the two datasets. This result demonstrated that the proposed approach improved the detection attack performance in imbalanced multiclass IIoT datasets and was superior to existing IDS frameworks.

Suggested Citation

  • Thi-Thu-Huong Le & Yustus Eko Oktian & Howon Kim, 2022. "XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8707-:d:864066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8707/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Psychogyios & Andreas Papadakis & Stavroula Bourou & Nikolaos Nikolaou & Apostolos Maniatis & Theodore Zahariadis, 2024. "Deep Learning for Intrusion Detection Systems (IDSs) in Time Series Data," Future Internet, MDPI, vol. 16(3), pages 1-16, February.
    2. Yutao Li & Chuanguo Jia & Hong Chen & Hongchen Su & Jiahao Chen & Duoduo Wang, 2023. "Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8707-:d:864066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.