IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13284-d1232958.html
   My bibliography  Save this article

Techno-Environmental Evaluation and Optimization of a Hybrid System: Application of Numerical Simulation and Gray Wolf Algorithm in Saudi Arabia

Author

Listed:
  • Hisham Alghamdi

    (Electrical Engineering Department, College of Engineering, Najran University, Najran 55461, Saudi Arabia)

  • Aníbal Alviz-Meza

    (Grupo de Investigación en Deterioro de Materiales, Transición Energética y Ciencia de Datos DANT3, Facultad de Ingeniería, Arquitectura y Urbanismo, Universidad Señor de Sipán, Km 5 Vía Pimentel, Chiclayo 14001, Peru)

Abstract

Renewable energy systems have the potential to address increasing energy demand, mitigate environmental degradation, and decrease reliance on fossil fuels. Wind and solar power are examples of renewable energy sources that are characterized by their cleanliness, environmental friendliness, and sustainability. The combination of wind and solar energy is motivated by each energy source’s inherent variability. The objective of this study is to assess the technical, economic, and environmental aspects of a hybrid system designed to provide energy. This study utilizes numerical simulation and develops a novel model using the gray wolf optimization (GWO) algorithm to assess the technical, economic, and environmental consequences of adopting a hybrid system. The evaluation focused on determining the optimal configuration of a greenhouse unit in Najran, Saudi Arabia, over a period of 20 years. The results showed that the diesel generator produced 42% of the required energy when combined with photovoltaic generators, while photovoltaics produced 58%. The wind turbine generated 23% of the required power while the remaining 77% was produced by the diesel generator. Finally, diesel generators, photovoltaics, wind turbines were observed to generate 37%, 48%, and 15% of the required energy, respectively. This outcome is consistent with current knowledge because solar and wind systems reduce pollution. However, the diesel generator–photovoltaic–wind mode is the preferred method of reducing emissions. Finally, the rate of return on investment for diesel generators is 3.4 years, while for diesel-photovoltaic generators and the triple array it is 2.5 and 2.65 years, respectively.

Suggested Citation

  • Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "Techno-Environmental Evaluation and Optimization of a Hybrid System: Application of Numerical Simulation and Gray Wolf Algorithm in Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13284-:d:1232958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rebekka Besner & Kedar Mehta & Wilfried Zörner, 2023. "How to Enhance Energy Services in Informal Settlements? Qualitative Comparison of Renewable Energy Solutions," Energies, MDPI, vol. 16(12), pages 1-22, June.
    2. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    3. Abdullah, M.O. & Yung, V.C. & Anyi, M. & Othman, A.K. & Ab. Hamid, K.B. & Tarawe, J., 2010. "Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter," Energy, Elsevier, vol. 35(2), pages 639-646.
    4. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Franck Le Gall & Ehsan Sedgh Gooya, 2022. "Home Energy Management Considering Renewable Resources, Energy Storage, and an Electric Vehicle as a Backup," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Shafiullah, G.M. & Amanullah, M.T.O. & Shawkat Ali, A.B.M. & Jarvis, Dennis & Wolfs, Peter, 2012. "Prospects of renewable energy – a feasibility study in the Australian context," Renewable Energy, Elsevier, vol. 39(1), pages 183-197.
    6. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    7. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    8. Wongchai Anupong & Iskandar Muda & Sabah Auda AbdulAmeer & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Energy Consumption and Carbon Dioxide Production Optimization in an Educational Building Using the Supported Vector Machine and Ant Colony System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    9. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    10. Waad Bouaguel & Tagreed Alsulimani, 2022. "Understanding the Factors Influencing Consumers’ Intention toward Shifting to Solar Energy Technology for Residential Use in Saudi Arabia Using the Technology Acceptance Model," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdemar Moreira Cavalcante Junior & Rafael C. Neto & Eduardo José Barbosa & Fabrício Bradaschia & Marcelo Cabral Cavalcanti & Gustavo Medeiros de Souza Azevedo, 2024. "Evaluation of the Effectiveness of Solar Array Simulators in Reproducing the Characteristics of Photovoltaic Modules," Sustainability, MDPI, vol. 16(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    2. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    3. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    4. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    5. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    6. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    7. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    8. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    9. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    10. Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "A Novel Strategy for Converting Conventional Structures into Net-Zero-Energy Buildings without Destruction," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    11. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    12. Islam, M.K. & Hassan, N.M.S. & Rasul, M.G. & Emami, Kianoush & Chowdhury, Ashfaque Ahmed, 2024. "An off-grid hybrid renewable energy solution in remote Doomadgee of Far North Queensland, Australia: Optimisation, techno-socio-enviro-economic analysis and multivariate polynomial regression," Renewable Energy, Elsevier, vol. 231(C).
    13. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    14. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    15. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    16. Singh, G.K. & Senthil Kumar, A. & Saini, R.P., 2010. "Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(8), pages 3273-3283.
    17. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    18. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    19. Nuno Rego & Rui Castro & Carlos Santos Silva, 2023. "Assessment of Current Smart House Solutions: The Case of Portugal," Energies, MDPI, vol. 16(22), pages 1-23, November.
    20. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability," Sustainability, MDPI, vol. 16(16), pages 1-50, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13284-:d:1232958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.