IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i8p3273-3283.html
   My bibliography  Save this article

Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation

Author

Listed:
  • Singh, G.K.
  • Senthil Kumar, A.
  • Saini, R.P.

Abstract

This paper presents a simple method for finding the suitable value of shunt and series capacitance necessary to initiate self excitation and self-regulation (voltage regulation) in a self-excited six-phase induction generator (SPSEIG) for stand-alone renewable energy generation in conjunction with the hydropower. The problem is formulated as multivariable unconstrained nonlinear optimization problem. The admittance of the equivalent circuit of SPSEIG is taken as an objective function. Frequency and magnetic reactance or speed and magnetic reactance or frequency and capacitive reactance are selected as an independent variables depending upon the operational condition of the machine. Fmincon method is used to solve the optimization problem. Computed results were experimentally verified to validate the analytical approach presented in the paper.

Suggested Citation

  • Singh, G.K. & Senthil Kumar, A. & Saini, R.P., 2010. "Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(8), pages 3273-3283.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3273-3283
    DOI: 10.1016/j.energy.2010.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, G.K. & Kumar, A. Senthil & Saini, R.P., 2010. "Performance evaluation of series compensated self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(1), pages 288-297.
    2. Velusami, S. & Singaravelu, S., 2007. "Steady state modeling and fuzzy logic based analysis of wind driven single phase induction generators," Renewable Energy, Elsevier, vol. 32(14), pages 2386-2406.
    3. Canale, M. & Fagiano, L. & Milanese, M., 2009. "KiteGen: A revolution in wind energy generation," Energy, Elsevier, vol. 34(3), pages 355-361.
    4. Singh, G.K., 2008. "Modeling and experimental analysis of a self-excited six-phase induction generator for stand-alone renewable energy generation," Renewable Energy, Elsevier, vol. 33(7), pages 1605-1621.
    5. Abdullah, M.O. & Yung, V.C. & Anyi, M. & Othman, A.K. & Ab. Hamid, K.B. & Tarawe, J., 2010. "Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter," Energy, Elsevier, vol. 35(2), pages 639-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, G.K., 2011. "Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 36(9), pages 5621-5631.
    2. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Singh, G.K., 2011. "A six-phase synchronous generator for stand-alone renewable energy generation: Experimental analysis," Energy, Elsevier, vol. 36(3), pages 1768-1775.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, G.K., 2011. "Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 36(9), pages 5621-5631.
    2. Singh, G.K., 2011. "A six-phase synchronous generator for stand-alone renewable energy generation: Experimental analysis," Energy, Elsevier, vol. 36(3), pages 1768-1775.
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    5. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    6. Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
    7. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    8. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    9. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. John Foster & Liam Wagner & Liam Byrnes, 2014. "A Review of Distributed Generation for Rural and Remote Area Electrification," Energy Economics and Management Group Working Papers 3-2014, School of Economics, University of Queensland, Australia.
    12. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    13. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    14. Ion, Catalin Petrea & Marinescu, Corneliu, 2013. "Three-phase induction generators for single-phase power generation: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 73-80.
    15. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    16. Lee, Kyoung-Jun & Shin, Dongsul & Yoo, Dong-Wook & Choi, Han-Kyu & Kim, Hee-Je, 2013. "Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode – Experimental investigation," Energy, Elsevier, vol. 49(C), pages 475-483.
    17. Farooqui, Suhail Zaki, 2012. "Conversion of squirrel cage induction motors to wind turbine PMG," Renewable Energy, Elsevier, vol. 41(C), pages 345-349.
    18. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    19. Paleta, Rita & Pina, André & Silva, Carlos A., 2012. "Remote Autonomous Energy Systems Project: Towards sustainability in developing countries," Energy, Elsevier, vol. 48(1), pages 431-439.
    20. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3273-3283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.