IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1004-d1026262.html
   My bibliography  Save this article

Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile

Author

Listed:
  • Imene Khenissi

    (Department of Electrical Engineering, National Engineering School of Sfax, University of Sfax, Sfax 3036, Tunisia)

  • Tawfik Guesmi

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Ismail Marouani

    (Department of Electrical Engineering, National Engineering School of Sfax, University of Sfax, Sfax 3036, Tunisia)

  • Badr M. Alshammari

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Khalid Alqunun

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Saleh Albadran

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Salem Rahmani

    (Research Laboratory of Biophysics and Medical Technology, Higher Institute of Medical Technologies, University of Tunis El-Manar, Tunis 1002, Tunisia)

  • Rafik Neji

    (Department of Electrical Engineering, National Engineering School of Sfax, University of Sfax, Sfax 3036, Tunisia)

Abstract

Advances in PV technology have given rise to the increasing integration of PV-based distributed generation (PVDG) systems into distribution systems to mitigate the dependence on one power source and alleviate the global warming caused by traditional power plants. However, high power output coming from intermittent PVDG can create reverse power flow, which can cause an increase in system power losses and a distortion in the voltage profile. Therefore, the appropriate placement and sizing of a PVDG coupled with an energy storage system (ESS) to stock power during off-peak hours and to inject it during peak hours are necessary. Within this context, a new methodology based on an optimal power flow management strategy for the optimal allocation and sizing of PVDG systems coupled with battery energy storage (PVDG-BES) systems is proposed in this paper. To do this, this problem is formulated as an optimization problem where total real power losses are considered as the objective function. Thereafter, a new optimization technique combining a genetic algorithm with various chaotic maps is used to find the optimal PVDG-BES placement and size. To test the robustness and applicability of the proposed methodology, various benchmark functions and the IEEE 14-bus distribution network under fixed and intermittent load profiles are used. The simulation results prove that obtaining the optimal size and placement of the PVDG-BES system based on an optimal energy management strategy (EMS) presents better performance in terms of power losses reduction and voltage profile amelioration. In fact, the total system losses are reduced by 20.14% when EMS is applied compared with the case before integrating PVDG-BES.

Suggested Citation

  • Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1004-:d:1026262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    2. Stanisław Mikulski & Andrzej Tomczewski, 2021. "Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks," Energies, MDPI, vol. 14(21), pages 1-20, November.
    3. Kumar, Deepak & Rani, Mamta, 2022. "Alternated superior chaotic variants of gravitational search algorithm for optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Hassan, Aakash & Al-Abdeli, Yasir M. & Masek, Martin & Bass, Octavian, 2022. "Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints," Energy, Elsevier, vol. 238(PA).
    5. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangir Hossain & Aida. F. A. Kadir & Hussain Shareef & Rampelli Manojkumar & Nagham Saeed & Ainain. N. Hanafi, 2023. "A Grid-Connected Optimal Hybrid PV-BES System Sizing for Malaysian Commercial Buildings," Sustainability, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takele Ferede Agajie & Ahmed Ali & Armand Fopah-Lele & Isaac Amoussou & Baseem Khan & Carmen Lilí Rodríguez Velasco & Emmanuel Tanyi, 2023. "A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems," Energies, MDPI, vol. 16(2), pages 1-26, January.
    2. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    5. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    6. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    7. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    8. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    9. Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Alshimaa Dawood, 2023. "Three Chaotic Strategies for Enhancing the Self-Adaptive Harris Hawk Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 11(19), pages 1-27, October.
    10. Yahya Z. Alharthi, 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    11. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    12. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    13. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    14. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    15. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    16. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    17. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.
    18. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    19. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    20. Rani, Mamta & Agarwal, Rashi, 2009. "A new experimental approach to study the stability of logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2062-2066.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1004-:d:1026262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.