IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12496-d1219077.html
   My bibliography  Save this article

Anti-Disturbance Integrated Control Method and Energy Consumption Analysis of Central Heating Systems Based on Resistance–Capacitance Reactance

Author

Listed:
  • Lu Jin

    (China Electric Power Research Institute Limited, Beijing 100192, China)

  • Liguo Shi

    (Qingdao Power Supply Company of State Grid Shandong Province Electric Power Company, Qingdao 266001, China)

  • Dezhi Li

    (China Electric Power Research Institute Limited, Beijing 100192, China)

  • Kaicheng Liu

    (China Electric Power Research Institute Limited, Beijing 100192, China)

  • Ming Zhong

    (China Electric Power Research Institute Limited, Beijing 100192, China)

  • Jingshuai Pang

    (China Electric Power Research Institute Limited, Beijing 100192, China)

Abstract

Under the dual carbon strategy, with the frequent occurrence of extreme weather and the further increase in uncertainty of multi-user behavior, it is urgent to improve the stability of the heating systems and reduce heating energy consumption. Aiming at the problem of fault-disturbance control of the multi-user heating network in an integrated energy system, this paper proposes a novel analysis method of resistance–capacitance reactance based on the circuit principle to construct a dynamic thermal-power-flow model of the whole link of the multi-user heating network and analyze the fault-disturbance propagation characteristics of the heating network by this model. It shows that the difference in disturbance characteristics of different users in a multi-user heating network mainly depends on the characteristics of the heating pipeline between the heat user and the heat source, which provides a necessary basis for formulating intelligent control strategies against fault disturbance. Finally, taking a typical daily outdoor temperature in Beijing in winter as an example, this paper compares two different heating strategies and the blocker installation methods of the multi-user heating network to obtain a better heating strategy under actual conditions. Considering the heating fault disturbance, this paper proposes a novel intelligent heating strategy whose heating temperature will decrease during the fault-disturbance time, with an energy saving of about 16.5% compared with the heating strategy under actual conditions during the same period.

Suggested Citation

  • Lu Jin & Liguo Shi & Dezhi Li & Kaicheng Liu & Ming Zhong & Jingshuai Pang, 2023. "Anti-Disturbance Integrated Control Method and Energy Consumption Analysis of Central Heating Systems Based on Resistance–Capacitance Reactance," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12496-:d:1219077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Zhichen & Calautit, John, 2023. "Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change," Energy, Elsevier, vol. 269(C).
    2. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).
    3. Kleinertz, Britta & Gruber, Katharina, 2022. "District heating supply transformation – strategies, measures, and status quo of network operators’ transformation phase," Energy, Elsevier, vol. 239(PB).
    4. Dai, Yuanhang & Hao, Junhong & Wang, Xingce & Chen, Lei & Chen, Qun & Du, Xiaoze, 2022. "A comprehensive model and its optimal dispatch of an integrated electrical-thermal system with multiple heat sources," Energy, Elsevier, vol. 261(PA).
    5. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    6. Luo, Xi & Gao, Yaru & Liu, Xiaojun & Sun, Yongkai & Li, Na & Liu, Jianghua, 2023. "ACHRA: A novel model to study the propagation of clean heating acceptance among rural residents based on social networks," Applied Energy, Elsevier, vol. 333(C).
    7. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    2. Zhuang, Wennan & Zhou, Suyang & Chen, Jinyi & Gu, Wei, 2024. "Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator," Energy, Elsevier, vol. 289(C).
    3. Wei, Zhichen & Calautit, John Kaiser, 2024. "Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration," Applied Energy, Elsevier, vol. 360(C).
    4. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
    5. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    6. Uda Bala & Wei Li & Wenguo Wang & Yuying Gong & Yaheng Su & Yingshu Liu & Yi Zhang & Wei Wang, 2024. "The Sharing Energy Storage Mechanism for Demand Side Energy Communities," Energies, MDPI, vol. 17(21), pages 1-19, October.
    7. Shu, Lei & Mo, Yunjeong & Zhao, Dong, 2024. "Energy retrofits for smart and connected communities: Scopes and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Hao, Junhong & Tian, Liang & Yang, Yunxi & Feng, Xiaolong & Liang, Lu & Hong, Feng & Du, Xiaoze, 2024. "A novel asynchronous time-scale holistic control method for heating system based on the energy state space," Energy, Elsevier, vol. 290(C).
    9. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).
    10. Li, Hui & Mu, Wenyu & Chen, Tianqi & Wu, Jingwen, 2024. "A social network perspective on household cooking fuel transition: Evidence from China," Energy Economics, Elsevier, vol. 131(C).
    11. Qingxi Huang & Yongxin Song & Qie Sun & Xiaohan Ren & Wei Wang, 2024. "Integrating Compressed CO 2 Energy Storage in an Integrated Energy System," Energies, MDPI, vol. 17(7), pages 1-21, March.
    12. Lee, Zachary E. & Zhang, K. Max, 2023. "Regulated peer-to-peer energy markets for harnessing decentralized demand flexibility," Applied Energy, Elsevier, vol. 336(C).
    13. Dong, Lei & Sun, Shiting & Zhang, Shiming & Zhang, Tao & Pu, Tianjiao, 2024. "Distributed restoration for integrated electricity-gas-heating energy systems with an iterative loop scheme," Energy, Elsevier, vol. 304(C).
    14. Zhang, Huaquan & Yang, Fan & Chandio, Abbas Ali & Liu, Jing & Twumasi, Martinson Ankrah & Ozturk, Ilhan, 2023. "Assessing the effects of internet technology use on rural households' cooking energy consumption: Evidence from China," Energy, Elsevier, vol. 284(C).
    15. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Fan, Xianwang & You, Shijun & Jiang, Yan & Gao, Xinlei, 2023. "Optimization of hydraulic distribution using loop adjustment method in meshed district heating system with multiple heat sources," Energy, Elsevier, vol. 284(C).
    16. Kun Li & Yulong Ying & Xiangyu Yu & Jingchao Li, 2024. "Optimal Scheduling of Electricity and Carbon in Multi-Park Integrated Energy Systems," Energies, MDPI, vol. 17(9), pages 1-30, April.
    17. Hofmann, Matthias & Lindberg, Karen Byskov, 2024. "Evidence of households' demand flexibility in response to variable hourly electricity prices – Results from a comprehensive field experiment in Norway," Energy Policy, Elsevier, vol. 184(C).
    18. Zhu, Xiaoxun & Hu, Ming & Xue, Jinfei & Li, Yuxuan & Han, Zhonghe & Gao, Xiaoxia & Wang, Yu & Bao, Linlin, 2024. "Research on multi-time scale integrated energy scheduling optimization considering carbon constraints," Energy, Elsevier, vol. 302(C).
    19. Praveen K. Kopalle & Jesse Burkhardt & Kenneth Gillingham & Lauren S. Grewal & Nailya Ordabayeva, 2024. "Delivering affordable clean energy to consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1452-1474, October.
    20. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12496-:d:1219077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.