IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1210-d1603362.html
   My bibliography  Save this article

Combined Scheduling and Configuration Optimization of Power-to-Methanol System Considering Feedback Control of Thermal Power

Author

Listed:
  • Junjie Ye

    (Beijing Key Laboratory of Demand Side Multi-Energy Carriers Optimization and Interaction Technique, Beijing 100192, China)

  • Yinghui Liu

    (Beijing Key Laboratory of Demand Side Multi-Energy Carriers Optimization and Interaction Technique, Beijing 100192, China)

  • Li Sun

    (National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Liyang Research Institute of Southeast University, Liyang 213300, China)

  • Ke Chen

    (Beijing Key Laboratory of Demand Side Multi-Energy Carriers Optimization and Interaction Technique, Beijing 100192, China)

Abstract

A power-to-methanol (P2M) system is a promising energy storage approach in transforming surplus renewable energy into a chemical product while utilizing the captured CO 2 from conventional thermal power units. Most of the traditional methods for the optimal configuration of IES use the steady-state model of the equipment, while ignoring the dynamic deviation of the thermal power unit under variable operating conditions. This study enhances the steady-state model of the P2M system by incorporating feedback-based dynamic control for the thermal power generation (TPG) unit. A closed-loop state-space model of the TPG unit is introduced as an additional constraint within the optimization framework. Furthermore, a dynamic deviation index for the TPG unit is formulated and integrated into a mixed-integer linear programming (MILP) model. Together with the system’s annual operating cost over its life cycle, this index constitutes an objective function, aiming to minimize both the dynamic deviations and operating costs, thereby optimizing the capacity configuration of the P2M system’s components. The optimal results indicate that in the dynamic configuration, the hydrogen storage tank capacity increases by 94.73% and the electrolyzer capacity remains almost consistent, which shows the energy storage potential of the P2M. The optimized scheduling results show that the electrolyzer can effectively absorb the intermittency of renewable energy. This method of dynamic configuration planning can effectively suppress the thermal power unit output fluctuation, smooth the schedule curve, and realize the effect of peak shaving and valley filling.

Suggested Citation

  • Junjie Ye & Yinghui Liu & Li Sun & Ke Chen, 2025. "Combined Scheduling and Configuration Optimization of Power-to-Methanol System Considering Feedback Control of Thermal Power," Energies, MDPI, vol. 18(5), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1210-:d:1603362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    2. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    3. Domínguez, R. & Carrión, M. & Oggioni, G., 2020. "Planning and operating a renewable-dominated European power system under uncertainty," Applied Energy, Elsevier, vol. 258(C).
    4. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    5. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    6. Yang, Lihua & Wu, Xiao, 2024. "Net-zero carbon configuration approach for direct air carbon capture based integrated energy system considering dynamic characteristics of CO2 adsorption and desorption," Applied Energy, Elsevier, vol. 358(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaofeng & Liu, Yuting & Zhan, Yu & Yan, Renshi & Mei, Jin & Fu, Ang & Jiao, Fan & Zeng, Rong, 2024. "Multi-scenario optimization and performance evaluation of integrated energy system considering co-scheduling of EVs and stationary energy storage," Renewable Energy, Elsevier, vol. 237(PD).
    2. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    3. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    4. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    5. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    6. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    7. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    8. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    9. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    10. repec:cte:wsrepe:38369 is not listed on IDEAS
    11. Wang, Yalin & Xie, Wufei & Liu, Chenliang & Luo, Jiang & Qiu, Zhifeng & Deconinck, Geert, 2024. "Forecast of coal consumption in salt lake enterprises based on temporal gated recurrent unit network with squeeze-and-excitation attention," Energy, Elsevier, vol. 299(C).
    12. Mariana Losada-Agudelo & Sebastian Souyris, 2024. "Sustainable Operations Management in the Energy Sector: A Comprehensive Review of the Literature from 2000 to 2024," Sustainability, MDPI, vol. 16(18), pages 1-33, September.
    13. Aiming Mo & Yan Zhang & Yiyong Xiong & Fan Ma & Lin Sun, 2024. "Energy–Logistics Cooperative Optimization for a Port-Integrated Energy System," Mathematics, MDPI, vol. 12(12), pages 1-24, June.
    14. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    15. Zifa Liu & Chengchen Li, 2023. "Low-Carbon Economic Optimization of Integrated Energy System Considering Refined Utilization of Hydrogen Energy and Generalized Energy Storage," Energies, MDPI, vol. 16(15), pages 1-23, July.
    16. Wang, Zhaojun & Zhang, Zhonghui & Zhang, Zhonglian & Lei, Dayong & Li, Moxuan & Zhang, Liuyu, 2023. "Two-layer optimization of integrated energy system with considering ambient temperature effect and variable operation scheme," Energy, Elsevier, vol. 278(C).
    17. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    18. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
    19. Liu, Jing & Zhao, Tong, 2024. "Optimal operation of electricity-gas-heating-cooling integrated energy systems with SCPR-based carbon trading using a novel SMABC algorithm," Renewable Energy, Elsevier, vol. 232(C).
    20. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    21. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1210-:d:1603362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.