IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023070.html
   My bibliography  Save this article

District heating supply transformation – strategies, measures, and status quo of network operators’ transformation phase

Author

Listed:
  • Kleinertz, Britta
  • Gruber, Katharina

Abstract

Several cities are currently developing strategies in order to lower the emissions of their building heat supply to zero. Nevertheless, up to now there is no heat transformation guideline addressing questions such as the steps required to develop a transformation strategy and their order, the maturity levels of transformation strategies, or existing transformation measures and a viable methodology to compare these. In this research, based on scientific findings of optimal system design, connected with the practical experience of relevant stakeholders, who are involved in the transformation process, these questions are addressed focusing on district heating.

Suggested Citation

  • Kleinertz, Britta & Gruber, Katharina, 2022. "District heating supply transformation – strategies, measures, and status quo of network operators’ transformation phase," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023070
    DOI: 10.1016/j.energy.2021.122059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lygnerud, Kristina & Wheatcroft, Edward & Wynn, Henry, 2019. "Contracts, business models and barriers to investing in low temperature district heating projects," LSE Research Online Documents on Economics 101286, London School of Economics and Political Science, LSE Library.
    2. Melillo, Andreas & Durrer, Roman & Worlitschek, Jörg & Schütz, Philipp, 2020. "First results of remote building characterisation based on smart meter measurement data," Energy, Elsevier, vol. 200(C).
    3. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    4. Guelpa, Elisa, 2020. "Impact of network modelling in the analysis of district heating systems," Energy, Elsevier, vol. 213(C).
    5. Leoni, Paolo & Geyer, Roman & Schmidt, Ralf-Roman, 2020. "Developing innovative business models for reducing return temperatures in district heating systems: Approach and first results," Energy, Elsevier, vol. 195(C).
    6. Guelpa, Elisa & Marincioni, Ludovica & Deputato, Stefania & Capone, Martina & Amelio, Stefano & Pochettino, Enrico & Verda, Vittorio, 2019. "Demand side management in district heating networks: A real application," Energy, Elsevier, vol. 182(C), pages 433-442.
    7. Richardson, J., 1994. "Cost utility analysis: What should be measured?," Social Science & Medicine, Elsevier, vol. 39(1), pages 7-21, July.
    8. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    10. Kleinertz, Britta & Brühl, Götz & von Roon, Serafin, 2019. "Heat dispatch centre – Symbiosis of heat generation units to reach cost efficient low emission heat supply," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Jin & Liguo Shi & Dezhi Li & Kaicheng Liu & Ming Zhong & Jingshuai Pang, 2023. "Anti-Disturbance Integrated Control Method and Energy Consumption Analysis of Central Heating Systems Based on Resistance–Capacitance Reactance," Sustainability, MDPI, vol. 15(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    2. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    3. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    4. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
    8. Siddique, Muhammad Bilal & Nielsen, Per Sieverts & Rosendal, Mathias Berg & Jensen, Ida Græsted & Keles, Dogan, 2023. "Impacts of earlier natural gas phase-out & heat-saving policies on district heating and the energy system," Energy Policy, Elsevier, vol. 174(C).
    9. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    10. Hiltunen, Pauli & Syri, Sanna, 2021. "Low-temperature waste heat enabling abandoning coal in Espoo district heating system," Energy, Elsevier, vol. 231(C).
    11. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    12. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    13. Formhals, Julian & Feike, Frederik & Hemmatabady, Hoofar & Welsch, Bastian & Sass, Ingo, 2021. "Strategies for a transition towards a solar district heating grid with integrated seasonal geothermal energy storage," Energy, Elsevier, vol. 228(C).
    14. Benakopoulos, Theofanis & Vergo, William & Tunzi, Michele & Salenbien, Robbe & Kolarik, Jakub & Svendsen, Svend, 2022. "Energy and cost savings with continuous low temperature heating versus intermittent heating of an office building with district heating," Energy, Elsevier, vol. 252(C).
    15. Annelies Vandermeulen & Ina De Jaeger & Tijs Van Oevelen & Dirk Saelens & Lieve Helsen, 2020. "Analysis of Building Parameter Uncertainty in District Heating for Optimal Control of Network Flexibility," Energies, MDPI, vol. 13(23), pages 1-25, November.
    16. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    17. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
    18. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    19. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    20. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.