IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002338.html
   My bibliography  Save this article

Energy retrofits for smart and connected communities: Scopes and technologies

Author

Listed:
  • Shu, Lei
  • Mo, Yunjeong
  • Zhao, Dong

Abstract

The trajectory of sustainable urban development evolves with the integration of intelligent technologies, extending beyond individual buildings to encompass entire communities interwoven with smart systems. Energy retrofits at smart and connected communities are crucial for sustainable urban renewal, yet they present distinct challenges from individual home retrofitting. However, a comprehensive understanding of the emerging research scopes and technologies in large-scale energy retrofits is lacking. To address this problem, this research systematically reviews journal publications in this field from 2000 to 2023. Results disclose four research scopes: building construction, mechanical systems and equipment, electrical systems and computing, and human-centered design and connectivity, suggesting a new landscape for energy retrofit research, which largely extends beyond the traditional field of the built environment (e.g., heating, cooling, lighting, and structure) to advanced computing, renewable energy, and human-centered connectivity. Results also delineate a new paradigm of retrofit technologies with three focused areas: within-building optimizations (heating and air conditioning, envelope, engineering design, and smart technology), between-building connections (power grid, district energy, and integrated energy system), and whole-community integrations. They represent the nodes, ties, and interplay within community networks. Eight retrofit focuses and their specific technologies and computational techniques are summarized and examined. Notably, the approach of simulation and computational modeling is prevalent, with evolutionary algorithms featured in computational techniques. The review suggests five gaps and proposes a roadmap to advance future research in energy retrofits, specifically emphasizing the integration of intelligent technologies and multidisciplinary collaborations.

Suggested Citation

  • Shu, Lei & Mo, Yunjeong & Zhao, Dong, 2024. "Energy retrofits for smart and connected communities: Scopes and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002338
    DOI: 10.1016/j.rser.2024.114510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Geneidy, Rami & Howard, Bianca, 2020. "Contracted energy flexibility characteristics of communities: Analysis of a control strategy for demand response," Applied Energy, Elsevier, vol. 263(C).
    2. Nelson, James & Johnson, Nathan G. & Chinimilli, Prudhvi Tej & Zhang, Wenlong, 2019. "Residential cooling using separated and coupled precooling and thermal energy storage strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. de Souza Dutra, Michael David & da Conceição Júnior, Gerson & de Paula Ferreira, William & Campos Chaves, Matheus Roberto, 2020. "A customized transition towards smart homes: A fast framework for economic analyses," Applied Energy, Elsevier, vol. 262(C).
    4. Reynolds, Jonathan & Ahmad, Muhammad Waseem & Rezgui, Yacine & Hippolyte, Jean-Laurent, 2019. "Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 699-713.
    5. Mohamed, Mohamed A., 2022. "A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid," Energy, Elsevier, vol. 252(C).
    6. Blumberga, Andra & Vanaga, Ruta & Freimanis, Ritvars & Blumberga, Dagnija & Antužs, Juris & Krastiņš, Artūrs & Jankovskis, Ivars & Bondars, Edgars & Treija, Sandra, 2020. "Transition from traditional historic urban block to positive energy block," Energy, Elsevier, vol. 202(C).
    7. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    8. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    9. Yang, Jian & Xu, Zhengtao & Ye, Hong & Xu, Xiaojie & Wu, Xi & Wang, Jianxiang, 2015. "Performance analyses of building energy on phase transition processes of VO2 windows with an improved model," Applied Energy, Elsevier, vol. 159(C), pages 502-508.
    10. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2018. "Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system," Applied Energy, Elsevier, vol. 222(C), pages 280-299.
    11. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    12. Battaglia, V. & Massarotti, N. & Vanoli, L., 2022. "Urban regeneration plans: Bridging the gap between planning and design energy districts," Energy, Elsevier, vol. 254(PA).
    13. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    14. Ali Hainoun & Hans-Martin Neumann & Naomi Morishita-Steffen & Baptiste Mougeot & Étienne Vignali & Florian Mandel & Felix Hörmann & Sebastian Stortecky & Katharina Walter & Martin Kaltenhauser-Barth &, 2022. "Smarter Together: Monitoring and Evaluation of Integrated Building Solutions for Low-Energy Districts of Lighthouse Cities Lyon, Munich, and Vienna," Energies, MDPI, vol. 15(19), pages 1-26, September.
    15. Fahad Alsokhiry & Pierluigi Siano & Andres Annuk & Mohamed A. Mohamed, 2022. "A Novel Time-of-Use Pricing Based Energy Management System for Smart Home Appliances: Cost-Effective Method," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    16. Liu, Bokai & Penaka, Santhan Reddy & Lu, Weizhuo & Feng, Kailun & Rebbling, Anders & Olofsson, Thomas, 2023. "Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden," Technology in Society, Elsevier, vol. 75(C).
    17. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    18. Samuel De Alencar Bezerra & Francisco Jackson dos Santos & Plácido Rogerio Pinheiro & Fábio Rocha Barbosa, 2017. "Dynamic Evaluation of the Energy Efficiency of Environments in Brazilian University Classrooms Using DEA," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    19. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, vol. 12(13), pages 1-42, July.
    20. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    21. Christoph Bahret & Ludger Eltrop, 2021. "Cost-Optimized Heat and Power Supply for Residential Buildings: The Cost-Reducing Effect of Forming Smart Energy Neighborhoods," Energies, MDPI, vol. 14(16), pages 1-16, August.
    22. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    23. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    24. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    25. Georgios Tsoumanis & João Formiga & Nuno Bilo & Panagiotis Tsarchopoulos & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    26. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    27. Jason F. Shogren & Laura O. Taylor, 2008. "On Behavioral-Environmental Economics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 26-44, Winter.
    28. Krarti, Moncef, 2015. "Evaluation of large scale building energy efficiency retrofit program in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1069-1080.
    29. Wu, Zhou & Wang, Bo & Xia, Xiaohua, 2016. "Large-scale building energy efficiency retrofit: Concept, model and control," Energy, Elsevier, vol. 109(C), pages 456-465.
    30. Askeland, Kristine & Bozhkova, Kristina N. & Sorknæs, Peter, 2019. "Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?," Renewable Energy, Elsevier, vol. 141(C), pages 646-656.
    31. Lin, Chun-Cheng & Wu, Yi-Fang & Liu, Wan-Yu, 2021. "Optimal sharing energy of a complex of houses through energy trading in the Internet of energy," Energy, Elsevier, vol. 220(C).
    32. Rosemary E. Alden & Huangjie Gong & Tim Rooney & Brian Branecky & Dan M. Ionel, 2023. "Electric Water Heater Modeling for Large-Scale Distribution Power Systems Studies with Energy Storage CTA-2045 Based VPP and CVR," Energies, MDPI, vol. 16(12), pages 1-22, June.
    33. Beccali, M. & Finocchiaro, P. & Ippolito, M.G. & Leone, G. & Panno, D. & Zizzo, G., 2018. "Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: A case study," Energy, Elsevier, vol. 157(C), pages 106-114.
    34. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    35. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).
    36. Deakin, Mark & Campbell, Fiona & Reid, Alasdair, 2012. "The mass-retrofitting of an energy efficient-low carbon zone: Baselining the urban regeneration strategy, vision, masterplan and redevelopment scheme," Energy Policy, Elsevier, vol. 45(C), pages 187-200.
    37. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    38. Niu, Zhibin & Wu, Junqi & Liu, Xiufeng & Huang, Lizhen & Nielsen, Per Sieverts, 2021. "Understanding energy demand behaviors through spatio-temporal smart meter data analysis," Energy, Elsevier, vol. 226(C).
    39. Xuan Luo & Tianzhen Hong & Yu-Hang Tang, 2020. "Modeling Thermal Interactions between Buildings in an Urban Context," Energies, MDPI, vol. 13(9), pages 1-17, May.
    40. Li, Yang & Bu, Fanjin & Li, Yuanzheng & Long, Chao, 2023. "Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 333(C).
    41. Leitner, Benedikt & Widl, Edmund & Gawlik, Wolfgang & Hofmann, René, 2019. "A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids," Energy, Elsevier, vol. 182(C), pages 729-738.
    42. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
    43. Marialaura Di Somma & Amedeo Buonanno & Martina Caliano & Giorgio Graditi & Giorgio Piazza & Stefano Bracco & Federico Delfino, 2022. "Stochastic Operation Optimization of the Smart Savona Campus as an Integrated Local Energy Community Considering Energy Costs and Carbon Emissions," Energies, MDPI, vol. 15(22), pages 1-27, November.
    44. Matthew J Page & Joanne E McKenzie & Patrick M Bossuyt & Isabelle Boutron & Tammy C Hoffmann & Cynthia D Mulrow & Larissa Shamseer & Jennifer M Tetzlaff & Elie A Akl & Sue E Brennan & Roger Chou & Jul, 2021. "The PRISMA 2020 statement: An updated guideline for reporting systematic reviews," PLOS Medicine, Public Library of Science, vol. 18(3), pages 1-15, March.
    45. Guerrieri, M. & La Gennusa, M. & Peri, G. & Rizzo, G. & Scaccianoce, G., 2019. "University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    46. Kaisa Kontu & Jussi Vimpari & Petri Penttinen & Seppo Junnila, 2018. "City Scale Demand Side Management in Three Different-Sized District Heating Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    47. Fong, K.F. & Lee, C.K., 2012. "Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong," Applied Energy, Elsevier, vol. 93(C), pages 686-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    5. Zhou, Yuan & Ma, Yanpeng & Wang, Jiangjiang & Lu, Shuaikang, 2021. "Collaborative planning of spatial layouts of distributed energy stations and networks: A case study," Energy, Elsevier, vol. 234(C).
    6. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    8. Yan Liu & Meiyue Sang & Xiangrui Xu & Liyin Shen & Haijun Bao, 2023. "How Can Urban Regeneration Reduce Carbon Emissions? A Bibliometric Review," Land, MDPI, vol. 12(7), pages 1-19, June.
    9. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    10. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    11. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    12. Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
    13. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    14. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    15. Maurizio Sibilla & Dhouha Touibi & Fonbeyin Henry Abanda, 2023. "Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy," Energies, MDPI, vol. 16(11), pages 1-18, June.
    16. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    17. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    18. Boglárka Anna Éliás & Attila Jámbor, 2021. "Food Security and COVID-19: A Systematic Review of the First-Year Experience," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    19. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.