IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1570-d1363799.html
   My bibliography  Save this article

Integrating Compressed CO 2 Energy Storage in an Integrated Energy System

Author

Listed:
  • Qingxi Huang

    (Institute for Advanced Technology, Shandong University, Jinan 250061, China)

  • Yongxin Song

    (Institute for Advanced Technology, Shandong University, Jinan 250061, China)

  • Qie Sun

    (Institute for Advanced Technology, Shandong University, Jinan 250061, China
    Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Xiaohan Ren

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Wei Wang

    (Institute for Advanced Technology, Shandong University, Jinan 250061, China)

Abstract

The integration of an energy storage system into an integrated energy system (IES) enhances renewable energy penetration while catering to diverse energy loads. In previous studies, the adoption of a battery energy storage (BES) system posed challenges related to installation capacity and capacity loss, impacting the technical and economic performance of the IES. To overcome these challenges, this study introduces a novel design incorporating a compressed CO 2 energy storage (CCES) system into an IES. This integration mitigates the capacity loss issues associated with BES systems and offers advantages for configuring large-scale IESs. A mixed integer linear programming problem was formulated to optimize the configuration and operation of the IES. With an energy storage capacity of 267 MWh, the IES integrated with a CCES (IES–CCES) system incurred an investment cost of MUSD 161.9, slightly higher by MUSD 0.5 compared to the IES integrated with a BES (IES–BES) system. When not considering the capacity loss of the BES system, the annual operation cost of the IES–BES system was 0.5 MUSD lower than that of the IES–CCES system, amounting to MUSD 766.6. However, considering the capacity loss of the BES system, this study reveals that the operation cost of the IES–BES system surpassed that of the IES–CCES system beyond the sixth year. Over the 30-year lifespan of the IES, the total cost of the IES–CCES system was MUSD 4.4 lower than the minimum total cost of the IES–BES system.

Suggested Citation

  • Qingxi Huang & Yongxin Song & Qie Sun & Xiaohan Ren & Wei Wang, 2024. "Integrating Compressed CO 2 Energy Storage in an Integrated Energy System," Energies, MDPI, vol. 17(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1570-:d:1363799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    2. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    3. Huang, Qingxi & Feng, Biao & Liu, Shengchun & Ma, Cuiping & Li, Hailong & Sun, Qie, 2023. "Dynamic operating characteristics of a compressed CO2 energy storage system," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    4. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    5. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    6. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    7. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    8. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    9. Prajapati, Parth & Patel, Vivek & Raja, Bansi D. & Jouhara, Hussam, 2023. "Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle," Energy, Elsevier, vol. 274(C).
    10. Tongu, Daiki & Obara, Shin'ya, 2024. "Formation temperature range expansion and energy storage properties of CO2 hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Bin Zhang & Junbo Yang & Sule Tian & Qingxi Huang & Wei Wang & Qie Sun & Xiaohan Ren, 2023. "Techno-Economic Evaluation of a Compressed CO 2 Energy Storage System for Load Shifting Based on Dynamic Modelling," Energies, MDPI, vol. 16(23), pages 1-15, December.
    12. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
    13. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    14. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    15. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    16. Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
    17. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    18. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    19. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    20. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1570-:d:1363799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.