IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9197-d993217.html
   My bibliography  Save this article

Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm

Author

Listed:
  • Suqi Zhang

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Ningjing Zhang

    (School of Science, Tianjin University of Commerce, Tianjin 300134, China)

  • Ziqi Zhang

    (China Construction Second Engineering Bureau Ltd., South China Company, Shenzhen 518000, China)

  • Ying Chen

    (State Grid Tianjin Marketing Service Center (Metrology Center), Tianjin 300200, China)

Abstract

Accurate load forecasting is conducive to the formulation of the power generation plan, lays the foundation for the formulation of quotation, and provides the basis for the power management system and distribution management system. This study aims to propose a high precision load forecasting method. The power load forecasting model, based on the Improved Seagull Optimization Algorithm, which optimizes SVM (ISOA-SVM), is constructed. First, aiming at the problem that the random selection of internal parameters of SVM will affect its performance, the Improved Seagull Optimization Algorithm (ISOA) is used to optimize its parameters. Second, to solve the slow convergence speed of the Seagull Optimization Algorithm (SOA), three strategies are proposed to improve the optimization performance and convergence accuracy of SOA, and an ISOA algorithm with better optimization performance and higher convergence accuracy is proposed. Finally, the load forecasting model based on ISOA-SVM is established by using the Mean Square Error (MSE) as the objective function. Through the example analysis, the prediction performance of the ISOA-SVM is better than the comparison models and has good prediction accuracy and effectiveness. The more accurate load forecasting can provide guidance for power generation and power consumption planning of the power system.

Suggested Citation

  • Suqi Zhang & Ningjing Zhang & Ziqi Zhang & Ying Chen, 2022. "Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm," Energies, MDPI, vol. 15(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9197-:d:993217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinchao Li & Lin Chen & Yuwei Xiang & Jinying Li & Dong Peng, 2018. "Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Xiaomin Xu & Dongxiao Niu & Ming Fu & Huicong Xia & Han Wu, 2015. "A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search," Energies, MDPI, vol. 8(11), pages 1-21, November.
    3. García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
    4. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    5. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    6. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    7. Zuoxun Wang & Xinheng Wang & Chunrui Ma & Zengxu Song, 2021. "A Power Load Forecasting Model Based on FA-CSSA-ELM," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, April.
    8. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    9. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
    11. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    13. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laiqing Yan & Zutai Yan & Zhenwen Li & Ning Ma & Ran Li & Jian Qin, 2023. "Electricity Market Price Prediction Based on Quadratic Hybrid Decomposition and THPO Algorithm," Energies, MDPI, vol. 16(13), pages 1-18, July.
    2. Cuiping Zhou & Shaobo Li & Cankun Xie & Panliang Yuan & Xiangfu Long, 2024. "MISAO: A Multi-Strategy Improved Snow Ablation Optimizer for Unmanned Aerial Vehicle Path Planning," Mathematics, MDPI, vol. 12(18), pages 1-37, September.
    3. George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.
    4. Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
    5. Shakeel, Asim & Chong, Daotong & Wang, Jinshi, 2023. "Load forecasting of district heating system based on improved FB-Prophet model," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Salahuddin Khan, 2023. "Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    3. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    4. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    6. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    7. Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
    8. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    9. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.
    10. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
    11. Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
    12. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    13. Fang, Qin & Guo, Shaojun & Qiao, Xinghao, 2022. "Finite sample theory for high-dimensional functional/scalar time series with applications," LSE Research Online Documents on Economics 114637, London School of Economics and Political Science, LSE Library.
    14. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    15. Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
    16. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    17. Guo, Shaojun & Qiao, Xinghao, 2023. "On consistency and sparsity for high-dimensional functional time series with application to autoregressions," LSE Research Online Documents on Economics 114638, London School of Economics and Political Science, LSE Library.
    18. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    19. Abdelmonaem Jornaz & V. A. Samaranayake, 2019. "A Multi-Step Approach to Modeling the 24-hour Daily Profiles of Electricity Load using Daily Splines," Energies, MDPI, vol. 12(21), pages 1-22, November.
    20. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    21. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    22. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9197-:d:993217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.