IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v30y2014i2p369-374.html
   My bibliography  Save this article

GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes

Author

Listed:
  • Lloyd, James Robert

Abstract

This report discusses methods for forecasting hourly loads of a US utility as part of the load forecasting track of the Global Energy Forecasting Competition 2012 hosted on Kaggle. The methods described (gradient boosting machines and Gaussian processes) are generic machine learning/regression algorithms, and few domain-specific adjustments were made. Despite this, the algorithms were able to produce highly competitive predictions, which can hopefully inspire more refined techniques to compete with state-of-the-art load forecasting methodologies.

Suggested Citation

  • Lloyd, James Robert, 2014. "GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes," International Journal of Forecasting, Elsevier, vol. 30(2), pages 369-374.
  • Handle: RePEc:eee:intfor:v:30:y:2014:i:2:p:369-374
    DOI: 10.1016/j.ijforecast.2013.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207013000757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2013.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Guangrui & Chen, Xi & Weng, Yang, 2021. "Enhance load forecastability: Optimize data sampling policy by reinforcing user behaviors," European Journal of Operational Research, Elsevier, vol. 295(3), pages 924-934.
    2. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    3. Tartakovsky, Alexandre M. & Ma, Tong & Barajas-Solano, David A. & Tipireddy, Ramakrishna, 2023. "Physics-informed Gaussian process regression for states estimation and forecasting in power grids," International Journal of Forecasting, Elsevier, vol. 39(2), pages 967-980.
    4. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha & Wenying Wen, 2019. "Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods," Energies, MDPI, vol. 12(9), pages 1-17, May.
    5. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    6. Carla Sahori Seefoo Jarquin & Alessandro Gandelli & Francesco Grimaccia & Marco Mussetta, 2023. "Short-Term Probabilistic Load Forecasting in University Buildings by Means of Artificial Neural Networks," Forecasting, MDPI, vol. 5(2), pages 1-15, April.
    7. Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
    8. Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
    9. Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
    10. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    11. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
    12. Wang, Lin & Lv, Sheng-Xiang & Zeng, Yu-Rong, 2018. "Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China," Energy, Elsevier, vol. 155(C), pages 1013-1031.
    13. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    14. Salahuddin Khan, 2023. "Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    15. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    16. Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
    17. Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    19. Lin Lin & Lin Xue & Zhiqiang Hu & Nantian Huang, 2018. "Modular Predictor for Day-Ahead Load Forecasting and Feature Selection for Different Hours," Energies, MDPI, vol. 11(7), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:30:y:2014:i:2:p:369-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.