IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11757-d1206745.html
   My bibliography  Save this article

Microbial–Plant Collaborative Remediation of Cd-Contaminated Wastewater and Soil in the Surrounding Area of Nuclear Power Plants and Risk Assessment

Author

Listed:
  • Wei Wei

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Yan Song

    (School of Business and Management, Shanghai International Studies University, Shanghai 201620, China)

Abstract

The continuous development of China’s nuclear industry has caused an increasingly serious problem of heavy metal pollution in the ecological environment. A survey of the current situation shows that the quality of China’s groundwater bodies and their surrounding ecological environment has been severely affected. China has started to devote more attention to the issue of nuclear emissions and pollution. In view of this, this study takes an area contaminated by nuclear power plant emissions as the object of research and uses plant–microbe synergy to remediate the cadmium-contaminated environment. Cadmium-tolerant strains were isolated from the soil and identified as Serratia marcescens. The morphological characteristics of the cadmium-tolerant strains were observed with electron microscopy in the presence or absence of cadmium ions. The removal of Cd 2+ from wastewater was analyzed in four experimental groups: Cd 2+ removal from Cd 2+ -contaminated wastewater by combining a Cd-tolerant strain with Cd-flower, Cd-tolerant strain with Cd-flower, Cd-flower with alkali treatment, and Cd-tolerant strain with alkali treatment. This study innovatively treated Cd ion concentrations of 50 mg/L, 100 mg/L, 200 mg/L, and 300 mg/L. The results showed that the cadmium-tolerant strains were more densely concentrated in the treated Phyllostachys than in the untreated condition. This indicates that the Cd-tolerant strains were effectively enhanced by the alkali treatment of Phyllostachys spp. and that the adsorption of Cd ions to the Cd-tolerant strains was improved. In the presence of Cd 2+ flowers only, the best removal of Cd 2+ was achieved at a concentration of 50 mg/L, with a removal rate of 74.10%; the addition of Cd-tolerant strains resulted in a removal rate of 91.21%. When the alkali treatment was applied to the flat bamboo flowers, the removal rate was 84.36% when the concentration of Cd 2+ was 100 mg/L. Then, when the cadmium-tolerant strain was added to the treated flat bamboo flower group, the maximum removal rate was 89.74% when the concentration of Cd 2+ was 100 mg/L. The cadmium ion content of Cd 2+ increased positively with increasing experimental time. In addition, the quasi-secondary correlation coefficients for cadmium ions in Lobelia were all greater than 0.9905, indicating that the adsorption kinetics were significantly correlated with the quasi-secondary kinetics. The analysis of heavy metal enrichment in Lobelia was divided into four groups, with Lobelia showing the best tolerance and cadmium adsorption capacity at a cadmium concentration of 20 mg/L. The results of super-enrichment coefficients showed that the enrichment coefficients of Lobelia ranged from 1.03 to 1.97, with values greater than 1. All these results indicate that the combination of cadmium-tolerant strains and plants can effectively remediate nuclear-contaminated soil and wastewater, thus improving soil availability and water regeneration, and improving the human living environment.

Suggested Citation

  • Wei Wei & Yan Song, 2023. "Microbial–Plant Collaborative Remediation of Cd-Contaminated Wastewater and Soil in the Surrounding Area of Nuclear Power Plants and Risk Assessment," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11757-:d:1206745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    2. Meina Liang & Lin Lu & Huijun He & Jingxi Li & Zongqiang Zhu & Yinian Zhu, 2021. "Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    3. Mahmoud Mazarji & Muhammad Tukur Bayero & Tatiana Minkina & Svetlana Sushkova & Saglara Mandzhieva & Andrey Tereshchenko & Anna Timofeeva & Tatiana Bauer & Marina Burachevskaya & Rıdvan Kızılkaya & Co, 2021. "Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina Barčauskaitė & Olga Anne & Ieva Mockevičienė & Regina Repšienė & Gintaras Šiaudinis & Danutė Karčauskienė, 2023. "Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    2. Zan Li & Hongkun Zhang & Wenrui Jiang, 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    3. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    4. Haimei Chen & Haibin Chen & Levente Kardos & Veronika Szabó, 2023. "Application of Biochar for Ion-Adsorption of Rare Earth Contaminated Soil Remediation: A Review," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Theodora Bousdra & Sotiria G. Papadimou & Evangelia E. Golia, 2023. "The Use of biochar in the Remediation of Pb , Cd , and Cu -Contaminated Soils. The Impact of biochar Feedstock and Preparation Conditions on Its Remediation Capacity," Land, MDPI, vol. 12(2), pages 1-20, January.
    6. Patricia López-Casaperalta & Fredy Nicolás Molina-Rodríguez & Fernando Fernandez-F & Jeanette Fabiola Díaz-Quintanilla & Jaime E. Barreda-Del-Carpio & Julio Cesar Bernabe-Ortiz & Jorge Alberto Aguilar, 2022. "Optimization of a Textile Effluent Treatment System and Evaluation of the Feasibility to Be Reused as Influents in Textile Dyeing Processes," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    7. Shiva Aliyari Rad & Khatereh Nobaharan & Neda Pashapoor & Janhvi Pandey & Zahra Dehghanian & Venkatramanan Senapathi & Tatiana Minkina & Wenjie Ren & Vishnu D. Rajput & Behnam Asgari Lajayer, 2023. "Nano-Microbial Remediation of Polluted Soil: A Brief Insight," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    8. Tatiana Minnikova & Sergey Kolesnikov & Nikita Minin & Andrey Gorovtsov & Nikita Vasilchenko & Vladimir Chistyakov, 2023. "The Influence of Remediation with Bacillus and Paenibacillus Strains and Biochar on the Biological Activity of Petroleum-Hydrocarbon-Contaminated Haplic Chernozem," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    9. Yongping Gao & Xiaojun Li, 2022. "Effects of Bentonite Addition on the Speciation and Mobility of Cu and Ni in Soils from Old Mine Tailings," Sustainability, MDPI, vol. 14(17), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11757-:d:1206745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.