IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v119y2022ics0264837722002198.html
   My bibliography  Save this article

Low-income residents' strategies to cope with urban heat

Author

Listed:
  • Berger, Tania
  • Chundeli, Faiz Ahmed
  • Pandey, Rama Umesh
  • Jain, Minakshi
  • Tarafdar, Ayon Kumar
  • Ramamurthy, Adinarayanane

Abstract

Rising temperatures due to climate change and urban heat island effects lead to heat stress and need remedial actions at all city planning scales. The design of built spaces strongly influences residents' exposure to heat risks. However, practices that increase communities' resilience to heat are not yet influencing decision-making in urban planning. In this study, qualitative interviews were conducted in low-income households in three different cities in India and Austria to understand residents' strategies for coping with excess summer heat in their homes. Although significant differences are discernible between India and Austria, low-income households in both continents lack agency over their housing situation and have little means to adapt it to heat. This lack strongly influences how they can handle the heat. Lack of resources forces them to accept unfavourable thermal conditions and keeps them from affording any but the most basic remedies. While buildings constitute the single most important and effective means of protection against heat stress for most interviewees in India, design restrictions and the appliance of cheap building materials limit this protection's effectiveness, especially during evening and night times.

Suggested Citation

  • Berger, Tania & Chundeli, Faiz Ahmed & Pandey, Rama Umesh & Jain, Minakshi & Tarafdar, Ayon Kumar & Ramamurthy, Adinarayanane, 2022. "Low-income residents' strategies to cope with urban heat," Land Use Policy, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:lauspo:v:119:y:2022:i:c:s0264837722002198
    DOI: 10.1016/j.landusepol.2022.106192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837722002198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Chambers, 2020. "Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018," Climatic Change, Springer, vol. 163(1), pages 539-558, November.
    2. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    2. Céline Grislain-Letrémy & Julie Sixou & Aurélie Sotura, 2024. "Urban Heat Islands and Inequalities: Evidence from French Cities," Working papers 966, Banque de France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Juliane Kemen & Silvia Schäffer-Gemein & Johanna Grünewald & Thomas Kistemann, 2021. "Heat Perception and Coping Strategies: A Structured Interview-Based Study of Elderly People in Cologne, Germany," IJERPH, MDPI, vol. 18(14), pages 1-19, July.
    3. Yajie Du & Ming Jing & Chunyu Lu & Jingru Zong & Lingli Wang & Qing Wang, 2022. "Global Population Exposure to Extreme Temperatures and Disease Burden," IJERPH, MDPI, vol. 19(20), pages 1-12, October.
    4. Ramon Farré & Miguel A. Rodríguez-Lázaro & Anh Tuan Dinh-Xuan & Martí Pons-Odena & Daniel Navajas & David Gozal, 2021. "A Low-Cost, Easy-to-Assemble Device to Prevent Infant Hyperthermia under Conditions of High Thermal Stress," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    5. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    7. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Gege Nie & Jun Yang & Yuqing Zhang & Xiangming Xiao & Jianhong (Cecilia) Xia & Xiaoyu Cai & Chunli Li, 2024. "Duration of exposure to compound daytime-nighttime high temperatures and changes in population exposure in China under global warming," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    9. Priscila Weruska Stark da Silva & Denise Duarte & Stephan Pauleit, 2023. "The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment," Land, MDPI, vol. 12(2), pages 1-20, February.
    10. Wenyu Zhou & Jinjiang Zhang & Xuan Li & Fei Guo & Peisheng Zhu, 2024. "Influence of Environmental Factors on Pedestrian Summer Vitality in Urban Pedestrian Streets in Cold Regions Guided by Thermal Comfort: A Case Study of Sanlitun—Beijing, China," Sustainability, MDPI, vol. 16(23), pages 1-28, November.
    11. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    12. Arulalan T & Krishna AchutaRao & Ambuj D Sagar, 2023. "Climate science to inform adaptation policy: Heat waves over India in the 1.5°C and 2°C warmer worlds," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    13. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    14. Hongyu Du & Fengqi Zhou & Wenbo Cai & Yongli Cai & Yanqing Xu, 2021. "Thermal and Humidity Effect of Urban Green Spaces with Different Shapes: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 18(11), pages 1-13, June.
    15. Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Yonky Indrajaya & Irfan Budi Pramono & Nunung Puji Nugroho & Agung Budi Supangat & Dewi Retna Indrawati & Endang Savitri & Nining Wahyuningrum, 2022. "Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    16. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.
    17. Niels Wollschläger & Felix Zinck & Uwe Schlink, 2022. "Sustainable Urban Development for Heat Adaptation of Small and Medium Sized Communities," Land, MDPI, vol. 11(9), pages 1-17, August.
    18. Minghui Sun & Yibing Xue & Lei Wang, 2024. "Research on Optimized Design of Rural Housing in Cold Regions Based on Parametrization and Machine Learning," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    19. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Hakima Necira & Mohamed Elhadi Matallah & Soumia Bouzaher & Waqas Ahmed Mahar & Atef Ahriz, 2024. "Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates," Sustainability, MDPI, vol. 16(3), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:119:y:2022:i:c:s0264837722002198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.