IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2170-d1542986.html
   My bibliography  Save this article

Observation Angle Effect of Near-Ground Thermal Infrared Remote Sensing on the Temperature Results of Urban Land Surface

Author

Listed:
  • Xu Yuan

    (School of Architecture, Zhengzhou University, Zhengzhou 450001, China
    State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China)

  • Zhi Lv

    (School of Architecture, Zhengzhou University, Zhengzhou 450001, China)

  • Kati Laakso

    (Centre for Earth Observation Sciences, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada)

  • Jialiang Han

    (School of Architecture, Zhengzhou University, Zhengzhou 450001, China)

  • Xiao Liu

    (State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China
    School of Architecture, South China University of Technology, Guangzhou 510641, China
    Faculty of Architecture, The University of Hong Kong, Hong Kong 999077, China)

  • Qinglin Meng

    (State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China
    School of Architecture, South China University of Technology, Guangzhou 510641, China)

  • Sihan Xue

    (School of Architecture, Zhengzhou University, Zhengzhou 450001, China)

Abstract

During the process of urbanization, a large number of impervious land surfaces are replacing the biologically active surface. Land surface temperature is a key factor reflecting the urban thermal environment and a crucial factor affecting city livability and resident comfort. Therefore, the accurate measurement of land surface temperature is of great significance. Thermal infrared remote sensing is widely applied to study the urban thermal environment due to its distinctive advantages of high sensitivity, wide coverage, high resolution, and continuous measurement. Low-altitude remote sensing, performed using thermal infrared sensors carried by unmanned aerial vehicles (UAVs), is a common method of land surface observation. However, thermal infrared sensors may experience varying degrees of sway due to wind, affecting the quality of the data. It is still uncertain as to what degree angle changes affect thermal infrared data in urban environments. To investigate this effect, a near-ground remote sensing experiment was conducted to observe three common urban land surfaces, namely, marble tiles, cement tiles and grasses, at observation angles of 15°, 30°, 45°, and 60° using a thermal infrared imager. This is accompanied by synchronous ground temperature measurements conducted by iButton digital thermometers. Our results suggest that the temperature differences between the remote sensing data of the land surface and the corresponding ground truth data increase as a function of the increasing observation angle of the three land surfaces. Furthermore, the differences are minor when the observation angle changes are not more than 15° and the changes are not the same for different land surfaces. Our findings increase the current understanding of the effects of different angles on thermal infrared remote sensing in urban land surface temperature monitoring.

Suggested Citation

  • Xu Yuan & Zhi Lv & Kati Laakso & Jialiang Han & Xiao Liu & Qinglin Meng & Sihan Xue, 2024. "Observation Angle Effect of Near-Ground Thermal Infrared Remote Sensing on the Temperature Results of Urban Land Surface," Land, MDPI, vol. 13(12), pages 1-19, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2170-:d:1542986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    2. Evans Napwora Sitati & Siro Abdallah & Daniel Olago & Robert Marchant, 2024. "Past and Future Land Use and Land Cover Trends across the Mara Landscape and the Wider Mau River Basin, Kenya," Land, MDPI, vol. 13(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    3. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Eric J. Chaisson, 2022. "Energy Budgets of Evolving Nations and Their Growing Cities," Energies, MDPI, vol. 15(21), pages 1-50, November.
    5. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Minkyung Park & Heechul Kim, 2023. "Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data," Land, MDPI, vol. 12(12), pages 1-22, November.
    7. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    8. Antonio Ligsay & Olivier Telle & Richard Paul, 2021. "Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change," IJERPH, MDPI, vol. 18(9), pages 1-12, May.
    9. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    10. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    11. Sabrina Katharina Beckmann & Michael Hiete & Michael Schneider & Christoph Beck, 2021. "Heat adaptation measures in private households: an application and adaptation of the protective action decision model," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    12. Conghong Huang & Yan Tang & Yiyang Wu & Yu Tao & Muwu Xu & Nan Xu & Mingze Li & Xiaodan Liu & Henghui Xi & Weixin Ou, 2024. "Assessing Long-Term Thermal Environment Change with Landsat Time-Series Data in a Rapidly Urbanizing City in China," Land, MDPI, vol. 13(2), pages 1-15, February.
    13. Yang, Chen & Zhao, Shuqing, 2022. "Urban vertical profiles of three most urbanized Chinese cities and the spatial coupling with horizontal urban expansion," Land Use Policy, Elsevier, vol. 113(C).
    14. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    16. Huawei Li & Sandor Jombach & Guohang Tian & Yuanzheng Li & Handong Meng, 2022. "Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China," Land, MDPI, vol. 11(10), pages 1-18, October.
    17. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
    18. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Kaustubh Anil Salvi & Mukesh Kumar, 2024. "Imprint of urbanization on snow precipitation over the continental USA," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2170-:d:1542986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.