IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11635-d1204496.html
   My bibliography  Save this article

Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations

Author

Listed:
  • Muhammad Alif Miraj Jabbar

    (Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

  • Dat Thanh Tran

    (Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

  • Kyeong-Hwa Kim

    (Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea)

Abstract

To enhance the reliability and flexibility of DC microgrids (DCMGs), this paper presents a decentralized power flow control strategy (PFCS) by using the transition operation modes. The transition operation modes are introduced as an effective communication method among power units, eliminating the use of additional digital communication links (DCLs) for the purpose of ensuring the power balance as well as the voltage regulation even under uncertain conditions. During the transition operation modes, the power unit which transmits the information shifts the DC-link voltage level, and the power unit which receives the information continuously monitors the DC-link voltage with predetermined time. When uncertain conditions occur in a particular power unit, this power unit triggers the transition operation modes to send this information to all power units in the DCMG system. The proposed PFCS can maintain the DC-link voltage at the nominal value for steady-state conditions both in the grid-connected mode and islanded mode. Moreover, the proposed PFCS significantly enhances the overall reliability of the decentralized DCMG system by effectively addressing several uncertainties stemmed from electricity price fluctuations, grid availability, battery state-of-charge (SOC) levels, and wind power variations. The scalability of the DCMG system is also demonstrated by incorporating an electric vehicle (EV) unit as an additional energy storage system (ESS). The EV unit seamlessly cooperates with the existing battery unit, functioning as additional ESS to regulate the DC-link voltage when the battery SOC level is low. Simulation and experimentation results under various conditions demonstrate the effectiveness of the proposed PFCS.

Suggested Citation

  • Muhammad Alif Miraj Jabbar & Dat Thanh Tran & Kyeong-Hwa Kim, 2023. "Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations," Sustainability, MDPI, vol. 15(15), pages 1-33, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11635-:d:1204496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al Faris Habibullah & Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "Decentralized Control of DC Microgrid Based on Droop and Voltage Controls with Electricity Price Consideration," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    2. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    3. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    4. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    2. Al Faris Habibullah & Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "Decentralized Control of DC Microgrid Based on Droop and Voltage Controls with Electricity Price Consideration," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    3. Dat Thanh Tran & Al Faris Habibullah & Kyeong-Hwa Kim, 2022. "Seamless Power Management for a Distributed DC Microgrid with Minimum Communication Links under Transmission Time Delays," Sustainability, MDPI, vol. 14(22), pages 1-29, November.
    4. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "A Centralized Power Flow Control Scheme of EV-Connected DC Microgrid to Satisfy Multi-Objective Problems under Several Constraints," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    7. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    8. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    9. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    10. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    11. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    12. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    13. Liang Ma & Gang Xu, 2020. "Distributed Resilient Voltage and Reactive Power Control for Islanded Microgrids under False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-27, July.
    14. Chalaye, Pierrick & Sturmberg, Bjorn & Ransan-Cooper, Hedda & Lucas-Healey, Kathryn & Russell, A. Wendy & Hendriks, Johannes & Hansen, Paula & O'Neill, Matthew & Crowfoot, Warwick & Shorten, Phil, 2023. "Does site selection need to be democratized? A case study of grid-tied microgrids in Australia," Energy Policy, Elsevier, vol. 183(C).
    15. Dong Yu & Shan Gao & Xin Zhao & Yu Liu & Sicheng Wang & Tiancheng E. Song, 2023. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    16. Yuri Bulatov & Andrey Kryukov & Konstantin Suslov, 2022. "Simulation of Power Router-Based DC Distribution Systems with Distributed Generation and Energy Storage Units," Energies, MDPI, vol. 16(1), pages 1-16, December.
    17. Hak-Ju Lee & Ba Hau Vu & Rehman Zafar & Sung-Wook Hwang & Il-Yop Chung, 2021. "Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency," Energies, MDPI, vol. 14(2), pages 1-28, January.
    18. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.
    19. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    20. Augusto M. S. Alonso & Luis De Oro Arenas & Danilo I. Brandao & Elisabetta Tedeschi & Ricardo Q. Machado & Fernando P. Marafão, 2022. "Current-Based Coordination of Distributed Energy Resources in a Grid-Connected Low-Voltage Microgrid: An Experimental Validation of Adverse Operational Scenarios," Energies, MDPI, vol. 15(17), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11635-:d:1204496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.