IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11398-d657124.html
   My bibliography  Save this article

Decentralized Control of DC Microgrid Based on Droop and Voltage Controls with Electricity Price Consideration

Author

Listed:
  • Al Faris Habibullah

    (Research Center for Electrical and Information Technology, Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

  • Faris Adnan Padhilah

    (Research Center for Electrical and Information Technology, Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

  • Kyeong-Hwa Kim

    (Research Center for Electrical and Information Technology, Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

Abstract

In this paper, a power flow control strategy (PFCS) for the decentralized control of DC microgrids (DCMGs) is proposed to enhance the flexibility and scalability of the microgrid power system. The proposed scheme is achieved by combining the droop control and DC-link voltage control with the consideration of the electricity price condition. Generally, the droop control method can be used effectively in decentralized DCMGs to achieve power-sharing without additional communication links. However, the deviation of the DC-link voltage caused by the droop control affects the amount of power delivered to the load. As an alternative, the DC-link voltage control can be used to prevent such a deviation. To combine both control schemes in this study, the utility grid (UG) unit uses the DC-link voltage control to exchange the power between the DC-link and a UG in the grid-connected mode, while a distributed generator (DG) and energy storage system (ESS) units use the droop control method in the islanded mode. The operating modes of the UG, DG, ESS, and load units are determined by the deviation values of the DC-link voltage to maintain DCMG power balance. The overall PFCS is also developed for a decentralized DCMG system by taking into consideration several uncertainties such as DG power variation, battery state of charge (SOC) level, load demand, and grid availability. The proposed PFCS also considers electricity price conditions to adaptively change the DC-link voltage level for the purpose of minimizing the utility cost. When the DC-link voltage level is reduced due to the high electricity price condition, the proposed droop controller is designed such that the ESS unit operates with a discharging mode, which leads to the required minimum power support from the UG. The effectiveness of the proposed PFCS is demonstrated by comprehensive simulation and experimental results under various conditions. Those test results clearly confirm the control flexibility and overall performance of the proposed PFCS for a decentralized DCMG system.

Suggested Citation

  • Al Faris Habibullah & Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "Decentralized Control of DC Microgrid Based on Droop and Voltage Controls with Electricity Price Consideration," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11398-:d:657124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    2. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    3. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    4. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Yu & Shan Gao & Xin Zhao & Yu Liu & Sicheng Wang & Tiancheng E. Song, 2023. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    2. Muhammad Alif Miraj Jabbar & Dat Thanh Tran & Kyeong-Hwa Kim, 2023. "Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations," Sustainability, MDPI, vol. 15(15), pages 1-33, July.
    3. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    4. Dat Thanh Tran & Al Faris Habibullah & Kyeong-Hwa Kim, 2022. "Seamless Power Management for a Distributed DC Microgrid with Minimum Communication Links under Transmission Time Delays," Sustainability, MDPI, vol. 14(22), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    2. Muhammad Alif Miraj Jabbar & Dat Thanh Tran & Kyeong-Hwa Kim, 2023. "Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations," Sustainability, MDPI, vol. 15(15), pages 1-33, July.
    3. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "A Centralized Power Flow Control Scheme of EV-Connected DC Microgrid to Satisfy Multi-Objective Problems under Several Constraints," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    4. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "An Improved Power Management Strategy for MAS-Based Distributed Control of DC Microgrid under Communication Network Problems," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    5. Dat Thanh Tran & Al Faris Habibullah & Kyeong-Hwa Kim, 2022. "Seamless Power Management for a Distributed DC Microgrid with Minimum Communication Links under Transmission Time Delays," Sustainability, MDPI, vol. 14(22), pages 1-29, November.
    6. Anuoluwapo Aluko & Andrew Swanson & Leigh Jarvis & David Dorrell, 2022. "Modeling and Stability Analysis of Distributed Secondary Control Scheme for Stand-Alone DC Microgrid Applications," Energies, MDPI, vol. 15(15), pages 1-18, July.
    7. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    9. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    10. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    11. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    12. Hao Pan & Ming Ding & Rui Bi & Lei Sun, 2019. "Research on Cooperative Planning of Distributed Generation Access to AC/DC Distribution (Micro) Grids Based on Analytical Target Cascading," Energies, MDPI, vol. 12(10), pages 1-20, May.
    13. Muhammad Saad & Yongfeng Ju & Husan Ali & Sami Ullah Jan & Dawar Awan & Shahbaz Khan & Abdul Wadood & Bakht Muhammad Khan & Akhtar Ali & Tahir Khurshaid, 2021. "Behavioral Modeling Paradigm for DC Nanogrid Based Distributed Energy Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    14. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    15. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    16. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    17. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    18. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    19. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    20. Liang Ma & Gang Xu, 2020. "Distributed Resilient Voltage and Reactive Power Control for Islanded Microgrids under False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11398-:d:657124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.