IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11387-d1199761.html
   My bibliography  Save this article

Impact of Carbon Intensity Indicator on the Vessels’ Operation and Analysis of Onboard Operational Measures

Author

Listed:
  • Livia Rauca

    (Faculty of Transport, University Politehnica from Bucharest, Spl. Independentei No. 313, 060042 Bucharest, Romania)

  • Ghiorghe Batrinca

    (Department of Transport Management, Constanta Maritime University, Romania 194 Mircea cel Batrin Street, 900663 Constanta, Romania)

Abstract

The new carbon intensity indicator (CII) is an operational tool that is part of SEEMP III and came into force on 1 January 2023. It is a measure of a vessel’s efficiency in CO 2 emitted per deadweight nautical mile and is aimed at supporting the decarbonization of maritime transportation. There are studies indicating that no matter which CII option is applied, the overall CO 2 emissions can increase, and maybe the proposal of a new CII is required. It has been suggested that an average CII could be calculated for an entire company rather than for each individual ship. This case study analyzed the 1-year calendar routes of four vessels (one container carrier, two bulk carriers, and one tanker vessel); the CII results were evaluated, and further operational measures were applied to improve the CII rating. It was observed that CII is highly dependent on idle and laden voyages, and very good cooperation between shipowners and charterers is a must. The anchor/drifting and port times must be reduced to the minimum, and vessels’ schedules should be adjusted for just-in-time arrival to optimize the speed between ports. That requires the voyage planning to be evaluated and adjusted based on port operations.

Suggested Citation

  • Livia Rauca & Ghiorghe Batrinca, 2023. "Impact of Carbon Intensity Indicator on the Vessels’ Operation and Analysis of Onboard Operational Measures," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11387-:d:1199761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    2. Laurent Daniel & Takuya Adachi & Sunhye Lee, 2022. "Shipbuilding market developments, first semester 2022: Monitoring developments in ship supply, demand, prices and costs," OECD Science, Technology and Industry Policy Papers 132, OECD Publishing.
    3. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Li Chin Law & Epaminondas Mastorakos & Stephen Evans, 2022. "Estimates of the Decarbonization Potential of Alternative Fuels for Shipping as a Function of Vessel Type, Cargo, and Voyage," Energies, MDPI, vol. 15(20), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    2. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    4. Wojciech Koznowski & Andrzej Łebkowski, 2022. "Unmanned Electric Tugboat Formation Multi-Agent Energy-Aware Control System Concept," Energies, MDPI, vol. 15(24), pages 1-23, December.
    5. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    6. Tayfun Uyanık & Emir Ejder & Yasin Arslanoğlu & Yunus Yalman & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Thermoelectric Generators as an Alternative Energy Source in Shipboard Microgrids," Energies, MDPI, vol. 15(12), pages 1-14, June.
    7. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    9. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    10. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Zhanbin Gao & Yang Xiao & Jin Mao & Liang Zhou & Xinju Li & Zhiyong Li, 2024. "Optimization of Second-Generation Biodiesel Blends to Enhance Diesel Engine Performance and Reduce Pollutant Emissions," Energies, MDPI, vol. 17(23), pages 1-19, November.
    12. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Liu, Zhijiang & Ke, Yun & Ding, Shunliang, 2023. "Novel enhancement of energy distribution for marine hybrid propulsion systems by an advanced variable weight decision model predictive control," Energy, Elsevier, vol. 274(C).
    13. Feng, Yanchao & Liu, Gaoxiang & Meng, Xiangxu & Jiang, Kai & Huang, Rongbing & Zhang, Ci & Shi, Jiaxin & Pan, Yuxi, 2024. "How does digital government affect carbon intensity at the global level? New perspective of resource allocation optimization," Resources Policy, Elsevier, vol. 94(C).
    14. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Tianni Wang & Mark Ching-Pong Poo & Adolf K. Y. Ng & Zaili Yang, 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    16. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    17. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    18. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    19. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    20. Aitor Fernández-Jiménez & Eduardo Álvarez-Álvarez & Mario López & Mateo Fouz & Iván López & Ahmed Gharib-Yosry & Rubén Claus & Rodrigo Carballo, 2021. "Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig," Energies, MDPI, vol. 14(20), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11387-:d:1199761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.