IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11279-d1197944.html
   My bibliography  Save this article

Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization

Author

Listed:
  • Hesham Alhumade

    (Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Iqbal Ahmed Moujdin

    (Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Saad Al-Shahrani

    (Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

An efficient electrochemical energy conversion system with little to no environmental impact is the fuel cell (FC). FCs have demonstrated encouraging results in various applications and can even run on biofuel, such as bio-glycerol, a by-product of biodiesel. The most effective ways to operate FCs can significantly enhance their effectiveness. Incorporating fuzzy modeling and metaheuristic methods, this work used artificial intelligence to determine the ideal operating parameters for a microfluidic fuel cell (MFC). The concentrations of the following four variables were considered: bio-glycerol concentration, anode electrocatalyst loading, anode electrolyte concentration, and cathode electrolyte concentration. The output power density of the MFC was used to assess its performance. The output power density of the MFC was modeled using fuzzy logic, taking into account the aforementioned operational parameters. A jellyfish search optimizer (JSO) was then used to find the ideal operating conditions. The results were contrasted with response surface methodology (RSM) and experimental datasets to demonstrate the superiority of the proposed integration between fuzzy modeling and the JSO. In comparison with the measured and RSM approaches, the suggested strategy boosted the power density of the MFC by 9.38% and 8.6%, respectively.

Suggested Citation

  • Hesham Alhumade & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11279-:d:1197944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    3. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    2. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    3. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    4. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    5. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    6. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    7. Xu, Chenyang & Wang, Jian & Wang, Jianzhong & Yang, Kun & Li, Guangzhong & Gao, Wenbin & Wang, Hao & Zhao, Shaoyang, 2024. "Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers," Applied Energy, Elsevier, vol. 357(C).
    8. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    9. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    10. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    11. He, Wei & Zhang, Jifang & Guo, Rui & Pei, Chenchen & Li, Hailong & Liu, Shengchun & Wei, Jie & Wang, Yulin, 2022. "Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation," Applied Energy, Elsevier, vol. 327(C).
    12. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    14. Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.
    15. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    16. Liqiong Huang & Yuanyuan Wang & Yuxuan Guo & Gang Hu, 2022. "An Improved Reptile Search Algorithm Based on Lévy Flight and Interactive Crossover Strategy to Engineering Application," Mathematics, MDPI, vol. 10(13), pages 1-39, July.
    17. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    18. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    19. Chen, Chaogang & Gao, Yuan, 2024. "Using multi-threshold non-local means joint distribution method to analysis the spatial distribution patterns of binder and fibers in gas diffusion layers of fuel cells," Applied Energy, Elsevier, vol. 358(C).
    20. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11279-:d:1197944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.