Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Duncan, Andrew & Pollard, Andrew & Fellouah, Hachimi, 2013. "Torrefied, spherical biomass pellets through the use of experimental design," Applied Energy, Elsevier, vol. 101(C), pages 237-243.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
- Lelis Gonzaga Fraga & João Silva & José Carlos Teixeira & Manuel E. C. Ferreira & Senhorinha F. Teixeira & Cândida Vilarinho & Maria Margarida Gonçalves, 2022. "Study of Mass Loss and Elemental Analysis of Pine Wood Pellets in a Small-Scale Reactor," Energies, MDPI, vol. 15(14), pages 1-15, July.
- Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
- Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
- Xuejun Qian & Seong Lee & Ana-maria Soto & Guangming Chen, 2018. "Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis," Resources, MDPI, vol. 7(3), pages 1-14, June.
- Kim, Seok Jun & Park, Sunyong & Oh, Kwang Cheol & Ju, Young Min & Cho, La hoon & Kim, Dae Hyun, 2021. "Development of surface torrefaction process to utilize agro-byproducts as an energy source," Energy, Elsevier, vol. 233(C).
- Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
- Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
- Zamorano, M. & Popov, V. & Rodríguez, M.L. & García-Maraver, A., 2011. "A comparative study of quality properties of pelletized agricultural and forestry lopping residues," Renewable Energy, Elsevier, vol. 36(11), pages 3133-3140.
- Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alperay Altıkat & Mehmet Hakkı Alma & Aysun Altıkat & Mehmet Emin Bilgili & Sefa Altıkat, 2024. "A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Guo, Feihong & Chen, Jun & He, Yi & Gardy, Jabbar & Sun, Yahui & Jiang, Jingyu & Jiang, Xiaoxiang, 2022. "Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder," Renewable Energy, Elsevier, vol. 191(C), pages 213-224.
- Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
- Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
- Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
- Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
- Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
- Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
- Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
- Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
- Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
- Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Adrian Knapczyk, 2020. "Influence of Raw Material Drying Temperature on the Scots Pine ( Pinus sylvestris L.) Biomass Agglomeration Process—A Preliminary Study," Energies, MDPI, vol. 13(7), pages 1-17, April.
- Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
- Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
- Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
- Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
- Parthasarathy Velusamy & Jagadeesan Srinivasan & Nithyaselvakumari Subramanian & Rakesh Kumar Mahendran & Muhammad Qaiser Saleem & Maqbool Ahmad & Muhammad Shafiq & Jin-Ghoo Choi, 2023. "Optimization-Driven Machine Learning Approach for the Prediction of Hydrochar Properties from Municipal Solid Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
- Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
More about this item
Keywords
rose pulp; torrefaction; biomass; pellet; biofuel;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10971-:d:1193120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.