IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10808-d1190609.html
   My bibliography  Save this article

Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling

Author

Listed:
  • Hongbo Zhu

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China)

  • Bing Zhang

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China)

  • Weidong Song

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China)

  • Jiguang Dai

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China)

  • Xinmei Lan

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China)

  • Xinyue Chang

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China)

Abstract

With the popularization of solar energy development and utilization, photovoltaic power generation is widely used in countries around the world and is increasingly becoming an important part of new energy generation. However, it cannot be ignored that changes in solar radiation and meteorological conditions can cause volatility and intermittency in power generation, which, in turn, affects the stability and security of the power grid. Therefore, many studies aim to solve this problem by constructing accurate power prediction models for PV plants. However, most studies focus on adjusting the photovoltaic power station prediction model structure and parameters to achieve a high prediction accuracy. Few studies have examined how the various parameters affect the output of photovoltaic power plants, as well as how significantly and effectively these elements influence the forecast accuracy. In this study, we evaluate the correlations between solar irradiance intensity (GHI), atmospheric density (ρ), cloudiness (CC), wind speed (WS), relative humidity (RH), and ambient temperature (T) and a photovoltaic power station using a Pearson correlation analysis and remove the factors that have little correlation. The direct and indirect effects of the five factors other than wind speed (CC) on the photovoltaic power station are then estimated based on structural equation modeling; the indirect effects are generated by the interaction between the variables and ultimately have an impact on the power of the photovoltaic power station. Particle swarm optimization-based support vector regression (PSO-SVR) and variable weights utilizing the Mahalanobis distance were used to estimate the power of the photovoltaic power station over a short period of time, based on the contribution of the various solar radiation and climatic elements. Experiments were conducted on the basis of the measured data from a distributed photovoltaic power station in Changzhou, Jiangsu province, China. The results demonstrate that the short-term power of a photovoltaic power station is significantly influenced by the global horizontal irradiance (GHI), ambient temperature (T), and atmospheric density (ρ). Furthermore, the results also demonstrate how calculating the relative importance of the various contributing factors can help to improve the accuracy when estimating how powerful a photovoltaic power station will be. The multiple weighted regression model described in this study is demonstrated to be superior to the standard multiple regression model (PSO-SVR). The multiple weighted regression model resulted in a 7.2% increase in R 2 , a 10.7% decrease in the sum of squared error (SSE), a 2.2% decrease in the root mean square error (RMSE), and a 2.06% decrease in the continuous ranked probability score (CRPS).

Suggested Citation

  • Hongbo Zhu & Bing Zhang & Weidong Song & Jiguang Dai & Xinmei Lan & Xinyue Chang, 2023. "Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10808-:d:1190609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    4. Heo, Jae & Song, Kwonsik & Han, SangUk & Lee, Dong-Eun, 2021. "Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting," Applied Energy, Elsevier, vol. 295(C).
    5. Hamidreza Ghazvinian & Sayed-Farhad Mousavi & Hojat Karami & Saeed Farzin & Mohammad Ehteram & Md Shabbir Hossain & Chow Ming Fai & Huzaifa Bin Hashim & Vijay P Singh & Faizah Che Ros & Ali Najah Ahme, 2019. "Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-24, May.
    6. Tingting Zhu & Yiren Guo & Cong Wang & Chao Ni, 2020. "Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model," Energies, MDPI, vol. 13(17), pages 1-15, September.
    7. Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza, 2017. "Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy," Energies, MDPI, vol. 10(11), pages 1-17, November.
    8. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feiyue Wang & Fan Yang & Zixue Wang, 2024. "A Study on the Evolution of Forest Landscape Patterns in the Fuxin Region of China Combining SC-UNet and Spatial Pattern Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    2. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    4. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    5. Aleksander Radovan & Viktor Šunde & Danijel Kučak & Željko Ban, 2021. "Solar Irradiance Forecast Based on Cloud Movement Prediction," Energies, MDPI, vol. 14(13), pages 1-25, June.
    6. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    7. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    8. Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
    9. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    10. Llinet Benavides Cesar & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira & Ramon Alcarria, 2023. "CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)," Data, MDPI, vol. 8(4), pages 1-21, March.
    11. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
    12. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    13. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    14. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    15. Mondal, Rakesh & Roy, Surajit Kr & Giri, Chandan, 2024. "Solar power forecasting using domain knowledge," Energy, Elsevier, vol. 302(C).
    16. Tingting Zhu & Yiren Guo & Cong Wang & Chao Ni, 2020. "Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model," Energies, MDPI, vol. 13(17), pages 1-15, September.
    17. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Edna S. Solano & Carolina M. Affonso, 2023. "Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    19. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    20. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10808-:d:1190609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.