IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v8y2023i4p65-d1107843.html
   My bibliography  Save this article

CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)

Author

Listed:
  • Llinet Benavides Cesar

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Calle Mercator, 2, 28031 Madrid, Spain)

  • Miguel Ángel Manso Callejo

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Calle Mercator, 2, 28031 Madrid, Spain)

  • Calimanut-Ionut Cira

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Calle Mercator, 2, 28031 Madrid, Spain)

  • Ramon Alcarria

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Calle Mercator, 2, 28031 Madrid, Spain)

Abstract

Accurate solar forecasting lately relies on advances in the field of artificial intelligence and on the availability of databases with large amounts of information on meteorological variables. In this paper, we present the methodology applied to introduce a large-scale, public, and solar irradiance dataset, CyL-GHI, containing refined data from 37 stations found within the Spanish region of Castile and León (Spanish: Castilla y León, or CyL). In addition to the data cleaning steps, the procedure also features steps that enable the addition of meteorological and geographical variables that complement the value of the initial data. The proposed dataset, resulting from applying the processing methodology, is delivered both in raw format and with the quality processing applied, and continuously covers 18 years (the period from 1 January 2002 to 31 December 2019), with a temporal resolution of 30 min. CyL-GHI can result in great importance in studies focused on the spatial-temporal characteristics of solar irradiance data, due to the geographical information considered that enables a regional analysis of the phenomena (the 37 stations cover a land area larger than 94,226 km 2 ). Afterwards, three popular artificial intelligence algorithms were optimised and tested on CyL-GHI, their performance values being offered as baselines to compare other forecasting implementations. Furthermore, the ERA5 values corresponding to the studied area were analysed and compared with performance values delivered by the trained models. The inclusion of previous observations of neighbours as input to an optimised Random Forest model (applying a spatio-temporal approach) improved the predictive capability of the machine learning models by almost 3%.

Suggested Citation

  • Llinet Benavides Cesar & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira & Ramon Alcarria, 2023. "CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)," Data, MDPI, vol. 8(4), pages 1-21, March.
  • Handle: RePEc:gam:jdataj:v:8:y:2023:i:4:p:65-:d:1107843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/8/4/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/8/4/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amaro e Silva, R. & Brito, M.C., 2019. "Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation," Applied Energy, Elsevier, vol. 255(C).
    2. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    3. Sujan Ghimire & Ravinesh C Deo & Nawin Raj & Jianchun Mi, 2019. "Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction," Energies, MDPI, vol. 12(12), pages 1-39, June.
    4. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    5. Ariana Moncada & Walter Richardson & Rolando Vega-Avila, 2018. "Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA SkyImager Dataset," Energies, MDPI, vol. 11(8), pages 1-16, July.
    6. Williamson, Sarah & Businger, Steven & Matthews, Dax, 2018. "Development of a solar irradiance dataset for Oahu, Hawai'i," Renewable Energy, Elsevier, vol. 128(PA), pages 432-443.
    7. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    8. Xwégnon Ghislain Agoua & Robin Girard & Georges Kariniotakis, 2021. "Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy," Energies, MDPI, vol. 14(5), pages 1-15, March.
    9. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    10. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    2. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    3. Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    7. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    8. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    9. Hongbo Zhu & Bing Zhang & Weidong Song & Jiguang Dai & Xinmei Lan & Xinyue Chang, 2023. "Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    10. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    11. Javier Huertas Tato & Miguel Centeno Brito, 2018. "Using Smart Persistence and Random Forests to Predict Photovoltaic Energy Production," Energies, MDPI, vol. 12(1), pages 1-12, December.
    12. Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
    13. Tingting Zhu & Yiren Guo & Cong Wang & Chao Ni, 2020. "Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model," Energies, MDPI, vol. 13(17), pages 1-15, September.
    14. Lima, Marcello Anderson F.B. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2020. "Improving solar forecasting using Deep Learning and Portfolio Theory integration," Energy, Elsevier, vol. 195(C).
    15. Edna S. Solano & Carolina M. Affonso, 2023. "Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    16. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    17. Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2024. "Dataset for Machine Learning: Explicit All-Sky Image Features to Enhance Solar Irradiance Prediction," Data, MDPI, vol. 9(10), pages 1-12, September.
    18. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    19. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    20. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:8:y:2023:i:4:p:65-:d:1107843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.