IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10504-d1186281.html
   My bibliography  Save this article

Water Footprint Analysis of Sheep and Goat from Various Production Systems in Northern China

Author

Listed:
  • Fan Jiao

    (College of Information Science and Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Lili Nie

    (College of Information Science and Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Jiayuan Shao

    (College of Agricultural Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Ying Wang

    (College of Agricultural Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Yihan Du

    (College of Information Science and Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Xiaofeng Guo

    (College of Information Science and Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

  • Hong Feng

    (State Grid Shanxi Electric Power Company, Fenyang Power Supply Company, Fenyang 032200, China)

  • Zhenyu Liu

    (College of Agricultural Engineering, Shanxi Agricultural University, Jingzhong 030801, China)

Abstract

Water scarcity is a significant global problem. Considerable water resources are consumed in the production of livestock and poultry products, thus posing a huge challenge to global freshwater resources. Sheep meat has the second highest water footprint among livestock meat products. Furthermore, as the demand for sheep meat increases on a year by year basis, water consumption continues to rise as a result. In order to make better informed decisions around water management, it is necessary to estimate the water footprint of animal husbandry. This study offers a comprehensive overview of the water footprint of sheep in Northern China. It analyzes the water footprint of feed production and virtual water using CROPWAT, based on the water footprint of sheep and goats in Shanxi under different production systems and feed components. The water footprint was calculated to be 6.03 m 3 /kg for sheep and 5.05 m 3 /kg for goats, respectively. Therefore, the water footprint of three farming modes, including grazing mixed and industrial in the Shanxi region was slightly higher than what other experts have evaluated for China. These data provide crucial information that can help reduce water resource consumption in animal husbandry and contribute to the development of sustainable strategies.

Suggested Citation

  • Fan Jiao & Lili Nie & Jiayuan Shao & Ying Wang & Yihan Du & Xiaofeng Guo & Hong Feng & Zhenyu Liu, 2023. "Water Footprint Analysis of Sheep and Goat from Various Production Systems in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10504-:d:1186281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouwman, A.F. & Van der Hoek, K.W. & Eickhout, B. & Soenario, I., 2005. "Exploring changes in world ruminant production systems," Agricultural Systems, Elsevier, vol. 84(2), pages 121-153, May.
    2. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.
    3. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    2. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    3. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    4. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    5. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    7. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    8. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    9. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    10. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    11. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    12. Emilio José Delgado-Algarra & Isabel María Román Sánchez & Eva Ordóñez Olmedo & Antonio Alejandro Lorca-Marín, 2019. "International MOOC Trends in Citizenship, Participation and Sustainability: Analysis of Technical, Didactic and Content Dimensions," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    13. Bosire, Caroline K. & Krol, Maarten S. & Mekonnen, Mesfin M. & Ogutu, Joseph O. & de Leeuw, Jan & Lannerstad, Mats & Hoekstra, Arjen Y., 2016. "Meat and milk production scenarios and the associated land footprint in Kenya," Agricultural Systems, Elsevier, vol. 145(C), pages 64-75.
    14. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    15. S. Brown & H. Schreier & L. Lavkulich, 2009. "Incorporating Virtual Water into Water Management: A British Columbia Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2681-2696, October.
    16. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    17. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    18. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    19. Asma Souissi & Nadhem Mtimet & Chokri Thabet & Talel Stambouli & Ali Chebil, 2019. "Impact of food consumption on water footprint and food security in Tunisia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 989-1008, October.
    20. Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10504-:d:1186281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.