IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10295-d1182719.html
   My bibliography  Save this article

Climatic Niche of an Invasive Mantid Species in Europe: Predicted New Areas for Species Expansion

Author

Listed:
  • Alexandru-Mihai Pintilioaie

    (Marine Biological Station “Prof. Dr. Ioan Borcea”, Alexandru Ioan Cuza University of Iași, 907015 Agigea, Romania)

  • Lucian Sfîcă

    (Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iași, 700506 Iași, Romania)

  • Emanuel Stefan Baltag

    (Marine Biological Station “Prof. Dr. Ioan Borcea”, Alexandru Ioan Cuza University of Iași, 907015 Agigea, Romania)

Abstract

While some species naturally expand their range by finding suitable climatic and trophic niches in new areas, others have been transported intentionally or unintentionally by humans since their journey from Africa to other continents. This phenomenon has occurred throughout history, being more prevalent at the end of the Middle Ages and at the start of the Industrial Revolution, with its frequency increasing in recent times due to globalization. Hierodula tenuidentata Saussure, 1869 is a mantis species originally distributed from India to Caucasus, that started to become more and more common in many European countries in the last few years, being considered an alien species. However, there is limited information available regarding its distribution range, habitat preference, and other ecological requirements that can help us understand its movements. We used observation data from its range, along with bioclimatic and elevation variables, to build Species Distribution Models in MaxEnt. This allowed us to analyze the species’ spatial ranges and understand and predict its distribution across Europe. Before selecting the best-fitting models, the occurrence data were spatially filtered, and bioclimatic variables tested for multicollinearity. Based on the present species distribution models, with AUC values of 0.967 for the training data and 0.960 for the test data, Hierodula tenuidentata emphasizes a coastal occurrence in the Black Sea and Mediterranean Sea regions, with local observations in southeastern Europe, an area that is likely to be occupied in the next few years through species expansion. Our data show that the expansion of Hierodula tenuidentata in Europe is influenced by the natural movement of the species westward combined with human introduction in some areas. It is now evident that the species’ presence in Europe is not solely based on human-aided dispersion, as was previously believed. The main variables influencing the distribution of Hierodula tenuidentata across Eurasia are temperature and precipitation, both of which have been significantly modified in recent years due to climate change.

Suggested Citation

  • Alexandru-Mihai Pintilioaie & Lucian Sfîcă & Emanuel Stefan Baltag, 2023. "Climatic Niche of an Invasive Mantid Species in Europe: Predicted New Areas for Species Expansion," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10295-:d:1182719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwei Wang & Zhefei Zeng & Yonghao Chen & Qiong La, 2024. "Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model," Sustainability, MDPI, vol. 16(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B Eugene Smith & Mark K Johnston & Robert Lücking, 2016. "From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    2. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    3. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    4. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    5. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    6. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    7. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    8. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    9. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    10. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    11. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    12. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    13. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    14. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    15. Marsh, Charles J. & Gavish, Yoni & Kuemmerlen, Mathias & Stoll, Stefan & Haase, Peter & Kunin, William E., 2023. "SDM profiling: A tool for assessing the information-content of sampled and unsampled locations for species distribution models," Ecological Modelling, Elsevier, vol. 475(C).
    16. Dimitra-Lida Rammou & Christos Astaras & Despina Migli & George Boutsis & Antonia Galanaki & Theodoros Kominos & Dionisios Youlatos, 2022. "European Ground Squirrels at the Edge: Current Distribution Status and Anticipated Impact of Climate on Europe’s Southernmost Population," Land, MDPI, vol. 11(2), pages 1-18, February.
    17. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    18. Fernandez, Marc & Sillero, Neftali & Yesson, Chris, 2022. "To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments," Ecological Modelling, Elsevier, vol. 471(C).
    19. Ingrid Lana Lima de Morais & Alexandra Amaro de Lima & Ivinne Nara Lobato dos Santos & Carlos Meneses & Rogério Freire da Silva & Ricardo Lopes & Santiago Linorio Ferreyra Ramos & Ananda Virginia de A, 2024. "Climate Change Impact on the Distribution of Forest Species in the Brazilian Amazon," Sustainability, MDPI, vol. 16(8), pages 1-15, April.
    20. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10295-:d:1182719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.