IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9526-d1170489.html
   My bibliography  Save this article

Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes

Author

Listed:
  • Mir Moazzam Ali Talpur

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
    These authors contributed equally to this work.)

  • Hiba Shaghaleh

    (College of Environment, Hohai University, Nanjing 210098, China
    These authors contributed equally to this work.)

  • Amar Ali Adam Hamad

    (College of Environment, Hohai University, Nanjing 210098, China)

  • Tingting Chang

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Muhammad Zia-ur-Rehman

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan)

  • Muhammad Usman

    (College of Environment, Hohai University, Nanjing 210098, China)

  • Yousef Alhaj Hamoud

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

The present study investigated the impact of planting spacing on tomato crop growth, water productivity, and fruit quality under different water regimes. Thus, a field experiment was conducted using a randomized complete block design in a factorial arrangement of treatments. The tomato plants were grown at three planting spacing patterns: 30 cm row-to-row planting spacing, 60 cm row-to-row planting spacing, and 90 cm row-to-row planting spacing, which were marked as (G 1 ), (G 2 ), and (G 3 ), respectively. For each planting spacing pattern, irrigation regimes, namely (I 1 ), (I 2 ), and (I 3 ), were established by setting the soil moisture content to 50%, 100%, and 150% of the reference evapotranspiration. The I 3 × G 2 combination resulted in the maximum values of plant height (68.2 cm), stem diameter (12.1 mm), and yield (41,269.9 kg/hm 2 ), providing the highest contents of protein (1.93 mg/kg), fat (0.81%), fiber (3.94%), and lycopene (4.00 mg/kg) of the fresh fruit. Conversely, the I 1 × G 1 led to the minimum values of plant height (37.3 cm), stem diameter (5.65 mm), and yield (7814.7 kg/hm 2 ), providing the lowest contents of protein (1.15 mg/kg), fat (0.50%), fiber (2.39%), and lycopene (2.15 mg/kg) of the fresh fruit. The I 1 × G 1 had the highest water productivity (25.06 kg/m 3 ) value, while the lowest WP (10.23 kg/m 3 ) value was achieved by I 3 × G 3 . While the I 1 × G 3 treatment minimized the uniformity coefficient and distribution uniformity, the I 3 × G 3 treatment maximized their values, indicating more uniform water distribution. Our findings indicate that the I 3 × G 2 combination can increase tomato productivity, growth, and fruit quality. However, the I 1 × G 1 performed better in terms of water productivity. The results of this study can positively contribute to improving tomato production systems’ sustainability, productivity, and quality under the increasing problem of climate change.

Suggested Citation

  • Mir Moazzam Ali Talpur & Hiba Shaghaleh & Amar Ali Adam Hamad & Tingting Chang & Muhammad Zia-ur-Rehman & Muhammad Usman & Yousef Alhaj Hamoud, 2023. "Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9526-:d:1170489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Çetin, Öner & Uygan, Demet, 2008. "The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return," Agricultural Water Management, Elsevier, vol. 95(8), pages 949-958, August.
    2. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    3. Gerçek, Sinan & Demirkaya, Mustafa & Işik, Doğan, 2017. "Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region," Agricultural Water Management, Elsevier, vol. 180(PA), pages 172-177.
    4. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    5. Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
    6. Ada Ignaciuk & Daniel D'Croz & Shahnila Islam, 2015. "Better Drip than Flood: Reaping the Benefits of Efficient Irrigation," EuroChoices, The Agricultural Economics Society, vol. 14(2), pages 26-32, August.
    7. Kanagaraj Muthu-Pandian Chanthini & Sengottayan Senthil-Nathan & Ganesh-Subbaraja Pavithra & Arul-Selvaraj Asahel & Pauldurai Malarvizhi & Ponnusamy Murugan & Arulsoosairaj Deva--Andrews & Haridoss Si, 2022. "The Macroalgal Biostimulant Improves the Functional Quality of Tomato Fruits Produced from Plants Grown under Salt Stress," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    8. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    9. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengshun Wang & Gang Wu & Hong Wang & Jiabao Wang & Manman Yuan & Xiong Guo & Chuang Liu & Suzhi Xing & Yixiang Sun & Mir Moazzam Ali Talpur, 2024. "Optimizing Tomato Cultivation: Impact of Ammonium–Nitrate Ratios on Growth, Nutrient Uptake, and Fertilizer Utilization," Sustainability, MDPI, vol. 16(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2013. "Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat," Agricultural Water Management, Elsevier, vol. 129(C), pages 173-180.
    2. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    3. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Santos, Berta de los & Medina, Eduardo & Brenes, Manuel & Aguado, Ana & García, Pedro & Romero, Concepción, 2020. "Chemical composition of table olive wastewater and its relationship with the bio-fortifying capacity of tomato (Solanum lycopersicum L.) plants," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    6. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    7. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    8. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    9. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    10. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    11. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    14. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    15. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Chilin Wei & Yan Zhu & Jinzhu Zhang & Zhenhua Wang, 2021. "Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    17. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    18. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    19. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    20. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9526-:d:1170489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.