IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic36.html
   My bibliography  Save this article

Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency

Author

Listed:
  • Alhaj Hamoud, Yousef
  • Shaghaleh, Hiba
  • Sheteiwy, Mohamed
  • Guo, Xiangping
  • Elshaikh, Nazar A.
  • Ullah Khan, Nasr
  • Oumarou, Abdoulaye
  • Rahim, Shah Fahad

Abstract

Rice is threatened by the inefficient use of water and fertilizer. However, understanding the effects of water regimes and soil clay contents on morphology and physiology of plant roots and their relations to yield and nutrient use-efficiency is essential to improve rice productivity. In this regard, three experimental soils were conducted with three soil clay content levels, namely, light clay (S LC), medium clay (S MC), and heavy clay (S HC), and three irrigation regimes, namely, alternate wetting and 0% soil drying (AWSD0%), alternate wetting and 10% soil drying (AWSD10%), alternate wetting and 30% soil drying (AWSD30%) over July-October in 2018. The experiment was a randomized complete block design in a factorial arrangement with three replications. The results showed that responses of roots and shoots and the nitrogen (N), phosphorus (P) and potassium (K) uptake of rice were significantly affected by the water regimes and soil clay contents. Under the same water regime, root morphology and physiology, biomass production and NPK utilization of rice were higher in high clay soil than light clay soil. Under the same soil clay content, AWSD0% regime was the optimal water management practice for growing rice, providing the highest grain yield. Whereas, AWSD30% regime was improper water management option for rice, offering the lowest grain yield. The combination, AWSD0%×S HC, resulted in the greatest values of the apparent recovery efficiency (ARE) of NPK applied, at AREN (43.4%), AREP (20.4%) and AREK (67.2%), as well as the highest values of partial factor productivity (PFP) of NPK, applied, at PFPN (19.7, g g−1), PFPP (31.9, g g−1) and PFPK (41.1, g g−1) respectively. Conversely, the treatment AWSD30%×S LC resulted in the lowest values of ARE of NPK applied at AREN (8.3%), AREP (3.0%), and AREK (6.7%), as well as the lowest values of PFP of NPK, applied at PFPN (7.0, g g−1), PFPP (11.9, g g−1) and PFPK (12.2, g g−1) respectively. Root length density, root weight density, root active absorption area, root oxidation ability, and root surface phosphatase were higher in AWSD0%×S HC than that in AWSD70% × S LC. While the former combination increased NPK contents in the rhizosphere, the latter their reduced availability due to the increment in pH and redox potential of the soil. The results are important for rice water management option in the paddy clay soil. The results also suggest that the adoption of alternate wetting and soil drying regimes should guarantee morphological and physiological improvements in root traits, by which contributes to greater biomass production, larger NPK acquisition and, thus better NPK utilization of rice.

Suggested Citation

  • Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:36
    DOI: 10.1016/j.agwat.2019.105706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419308741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    2. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    3. Yang, Changming & Yang, Linzhang & Yang, Yongxing & Ouyang, Zhu, 2004. "Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils," Agricultural Water Management, Elsevier, vol. 70(1), pages 67-81, October.
    4. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    5. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.
    6. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Danping Hou & Yuan Wei & Kun Liu & Jinsong Tan & Qingyu Bi & Guolan Liu & Xinqiao Yu & Junguo Bi & Lijun Luo, 2023. "The Response of Grain Yield and Quality of Water-Saving and Drought-Resistant Rice to Irrigation Regimes," Agriculture, MDPI, vol. 13(2), pages 1-12, January.
    3. Jingjing Zhu & Feifei Dou & Fesobi Olumide Phillip & Gang Liu & Huaifeng Liu, 2023. "Effect of Nitrification Inhibitors on Photosynthesis and Nitrogen Metabolism in ‘Sweet Sapphire’ ( V. vinifera L.) Grape Seedlings," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    4. Mir Moazzam Ali Talpur & Hiba Shaghaleh & Amar Ali Adam Hamad & Tingting Chang & Muhammad Zia-ur-Rehman & Muhammad Usman & Yousef Alhaj Hamoud, 2023. "Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes," Sustainability, MDPI, vol. 15(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    3. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    4. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Thakur, Amod K. & Mandal, Krishna G. & Mohanty, Rajeeb K. & Ambast, Sunil K., 2018. "Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management," Agricultural Water Management, Elsevier, vol. 206(C), pages 67-77.
    6. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    8. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    9. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    10. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    11. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    12. Hochman, Zvi & Horan, Heidi & Reddy, D. Raji & Sreenivas, Gade & Tallapragada, Chiranjeevi & Adusumilli, Ravindra & Gaydon, Don & Singh, Kamalesh K. & Roth, Christian H., 2017. "Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate," Agricultural Systems, Elsevier, vol. 150(C), pages 54-66.
    13. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    14. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    15. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    16. Xiaoguang, Yang & Bouman, B.A.M. & Huaqi, Wang & Zhimin, Wang & Junfang, Zhao & Bin, Chen, 2005. "Performance of temperate aerobic rice under different water regimes in North China," Agricultural Water Management, Elsevier, vol. 74(2), pages 107-122, June.
    17. Bouman, B. A.M. & Feng, Liping & Tuong, T.P. & Lu, Guoan & Wang, Huaqi & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 23-33, March.
    18. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.
    19. Nabipour, Ramtin & Yazdani, Mohammad Reza & Mirzaei, Farhad & Ebrahimian, Hamed & Alipour Mobaraki, Fatemeh, 2024. "Water productivity and yield characteristics of transplanted rice in puddled soil under drip tape irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    20. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.