IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9486-d1169959.html
   My bibliography  Save this article

Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems

Author

Listed:
  • Michael Strobel

    (Unit of Energy Efficient Building, Faculty of Engineering Science, Universität Innsbruck, 6020 Innsbruck, Austria
    Dr. Jakob Energy Research GmbH & Co. KG, 71834 Weinstadt, Germany)

  • Uli Jakob

    (Unit of Energy Efficient Building, Faculty of Engineering Science, Universität Innsbruck, 6020 Innsbruck, Austria
    Dr. Jakob Energy Research GmbH & Co. KG, 71834 Weinstadt, Germany)

  • Wolfgang Streicher

    (Unit of Energy Efficient Building, Faculty of Engineering Science, Universität Innsbruck, 6020 Innsbruck, Austria)

  • Daniel Neyer

    (Unit of Energy Efficient Building, Faculty of Engineering Science, Universität Innsbruck, 6020 Innsbruck, Austria
    Neyer Brainworks GmbH, 6700 Bludenz, Austria)

Abstract

Demand for space cooling systems is growing worldwide. The main reasons are socioeconomic developments such as the growing world population and the rise of economic wealth, especially in developing countries. These developments run simultaneously with global warming effects, increasing the need for cooling. This study introduces the development of the Cooling Demand Market Index (CDMI), which indicates the demand for cooling appliances worldwide at a spatial resolution of 1 km. It is based on population density, Gross Domestic Product (GDP)/capita and Cooling Degree Days (CDD) per climate zone. The CDMI is calculated for 2020 and 2050 in four different future scenarios in accordance with the Spatial Socioeconomic Pathways (SSP) and Representative Concentration Pathways (RCP). Further, the Solar Thermal Cooling Index (STCI) was developed to spatially estimate the worldwide potential to use solar thermal cooling systems based on solar availability and limitations due to maximum heat rejection temperature. Results of the CDMI show that the economic demand for cooling solutions is increasing, especially in developing countries, and that India will be by far the largest market by 2050. Countries such as Burundi and the Democratic Republic of the Congo show the strongest national increases in CDMI. The STCI indicates that ammonia absorption chillers and zeolite adsorption chillers can serve the vast majority of the market thanks to their capability to run at high condenser temperatures.

Suggested Citation

  • Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9486-:d:1169959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Yo Uehara & Tomoko Uno, 2022. "Evaluation of Energy-Saving and Improvement of the Thermal Environment of the House with High Thermal Insulation, Heat Storage Performance, and Fitting Adjustment," Energies, MDPI, vol. 15(18), pages 1-11, September.
    3. Daniel Mugnier & Uli Jakob, 2015. "Status of solar cooling in the World: markets and available products," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 229-234, May.
    4. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    5. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    6. Sadroddin Alavipanah & Martin Wegmann & Salman Qureshi & Qihao Weng & Thomas Koellner, 2015. "The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    7. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    8. Paolo Semenzato & Lucia Bortolini, 2023. "Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy)," Land, MDPI, vol. 12(2), pages 1-13, February.
    9. Wang, Weimin & Fernandez, Nick & Katipamula, Srinivas & Alvine, Kyle, 2018. "Performance assessment of a photonic radiative cooling system for office buildings," Renewable Energy, Elsevier, vol. 118(C), pages 265-277.
    10. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    11. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    12. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    13. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    14. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    15. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    16. Mutschler, Robin & Rüdisüli, Martin & Heer, Philipp & Eggimann, Sven, 2021. "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake," Applied Energy, Elsevier, vol. 288(C).
    17. Zhijie Wu & Yixin Zhang, 2019. "Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect," Sustainability, MDPI, vol. 11(3), pages 1-11, February.
    18. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    19. Joud Al Dakheel & Kheira Tabet Aoul, 2017. "Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review," Energies, MDPI, vol. 10(10), pages 1-32, October.
    20. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    2. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    3. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    4. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    6. van Sluisveld, Mariësse A.E. & Hof, Andries F. & Carrara, Samuel & Geels, Frank W. & Nilsson, Måns & Rogge, Karoline & Turnheim, Bruno & van Vuuren, Detlef P., 2020. "Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Keii Gi & Fuminori Sano & Ayami Hayashi & Toshimasa Tomoda & Keigo Akimoto, 2018. "A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 51-79, January.
    8. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    9. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    10. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    11. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    12. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    13. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    14. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    15. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    16. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    17. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    18. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Frauke Meyer & Hawal Shamon & Stefan Vögele, 2022. "Dynamics and Heterogeneity of Environmental Attitude, Willingness and Behavior in Germany from 1993 to 2021," Sustainability, MDPI, vol. 14(23), pages 1-22, December.
    20. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9486-:d:1169959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.